OpenClaw体验:比起“会说”,人们更偏爱“会做”的AI助手

Featured

2026年刚开篇,OpenClaw就彻底火出圈了——火到连名字都赶不上它的热度,从MoltBot到ClawBot,最后定格为OpenClaw,一路迭代,自带话题感。
最近我也上手体验了一番,不得不说,它的表现确实没让人失望,好感拉满。

不过今天咱们不聊深奥的开源逻辑,也不探讨数据隐私保护那些严肃话题,只想和大家聊聊一个更接地气的点:AI助手,终究要“有行动力”才管用。

其实我的笔记本上装了不少Agent工具,但说句实在话,它们大多像被“关在笼子里”一样,发挥有限——要么只能单纯陪你对话唠嗑,要么就只能完成几个预设好的固定操作,多一步都不肯动。

而OpenClaw最打动我的地方,恰恰和这些“佛系Agent”相反:它从不止步于“嘴上说说”,而是真的会动手解决问题,哪怕遇到卡点,也会想尽办法推进,直到把事情做成。

举个最直观的例子,我之前安装飞书插件时,反复尝试都失败了,一时也找不到问题出在哪。没想到OpenClaw自动去检查系统日志,一点点排查异常,甚至修改修复相关代码,折腾了一阵后,居然真的帮我把插件安装成功了。

更惊喜的是,它不只是能用好官方适配的各类插件,还能根据需求,自己创造合适的工具,不被现有功能束缚,核心只有一个:把事搞定。

说到这,不妨问大家一句:同样是AI Agent,你更偏爱哪种?是只会发号施令、指挥你干活的“指挥官”,还是肯动脑子、撸起袖子自己上的“实干派”?

答案其实不言而喻,肯定是后者。

这让我想起去年12月,豆包手机助手之所以能突然爆火,本质上也是同一个道理——它没有停留在“能对话”的层面,而是真正落地到“能做事”,用行动力戳中了大家的需求。

流量入口30年变迁:从PC到AI,用户注意力到底流向了哪里?

Featured

各时期流量入口的变迁:
流量入口随时代的变迁


流量入口30年变迁:从PC到AI,用户注意力到底流向了哪里?

互联网的发展史,本质上就是流量入口的迭代史。从只能坐在电脑前上网的年代,到如今 AI 助手随时响应的智能时代,用户获取信息、连接服务的方式不断被颠覆,而每一次入口变迁,都藏着商业世界的底层逻辑。今天就顺着时间线,聊聊流量入口的迭代规律,看看未来的机会在哪里。

1. 2010 年前(PC 互联网 / Web1.0):浏览器 + 搜索引擎,垄断流量话语权
在移动设备还没普及的 PC 时代,流量入口高度集中。当时的用户上网,第一步必然是打开 Windows 或 MacOS 系统,接着启动 Chrome、Safari、IE 等浏览器,最后通过谷歌、百度等搜索引擎查找信息 ——浏览器是必经之路,搜索引擎是核心枢纽。
除了搜索,门户网站(如新浪、搜狐)、垂直类网站(如各类行业论坛)也是重要流量池,用户通过输入网址或收藏夹访问,获取新闻、资讯、社区互动等服务。这个阶段的流量特点是 “主动搜索 + 固定入口”,谁掌握了浏览器、搜索引擎或大型门户网站,谁就掌握了流量分发权。比如谷歌凭借浏览器 + 搜索引擎的组合,成为全球 PC 互联网时代的流量霸主。

2. 2010-2018 年(移动互联网 / Web2.0):超级 APP + 移动 OS,流量去中心化
智能手机的普及彻底改变了流量格局,移动互联网时代正式到来。此时的流量入口从 PC 端转移到移动端,核心载体变成了移动 OS(iOS、Android)和超级 APP。
首先,iOS 和 Android 两大移动操作系统掌控了手机端的底层入口,所有 APP 都依赖其运行;其次,以微信、支付宝为代表的超级 APP 崛起,形成了 “一站式生态”—— 用户聊天、支付、购物、打车、看资讯等需求,都能在一个 APP 内完成,无需频繁切换。此外,短视频 APP、电商 APP、本地生活 APP 等垂直类应用也分流了大量流量,社交生态圈、本地生活圈、垂直类生态圈逐渐成型。
这个阶段的流量特点是 “场景化 + 碎片化”,用户的注意力被分散到各个 APP 中,超级 APP 成为流量聚合的核心,而移动 OS 则掌握着底层分发权限。谷歌也凭借 Android 操作系统,在移动时代延续了其流量优势。

3. 2018-2025 年(智能互联网过渡阶段):AI 助手 + 工具 AI 化,流量入口隐形化
随着 AI 技术的成熟,流量入口开始从 “有形 APP” 向 “无形智能服务” 转变。核心趋势是AI 助手崛起和各类工具 AI 化:用户不再需要主动打开 APP,而是通过 AI 助手(如手机自带的智能语音助手、ChatGPT 类产品)直接获取服务,比如语音查询天气、智能规划路线、AI 生成文案等。
同时,电商、内容、生活服务等各类工具都在加速 AI 化 —— 购物 APP 的智能推荐、内容平台的 AI 创作助手、办公软件的 AI 高效功能,都在让用户的使用体验更便捷。这个阶段的流量入口逐渐 “隐形”,用户不再关注 “打开哪个 APP”,而是关注 “能否快速解决需求”,AI 成为连接用户与服务的核心桥梁。

4. 2025 年后(Web3.0+AI 时代):AI 入口 + 全场景融合,流量无界化
展望未来,流量入口将进入 “AI 入口主导 + 全场景融合” 的新阶段。核心入口会是 **“AI + 搜索”“AI 助手”** 这类综合性智能服务,比如谷歌的 Gemini、Transformer 等 AI 产品,将整合搜索、创作、服务对接等功能,成为用户接入互联网的核心枢纽。
此时,AI 将彻底改变人们的工作、学习、生活方式:工作中,AI 辅助高效完成复杂任务;学习中,AI 定制个性化学习方案;生活中,全场景智能设备(手机、电脑、智能家电、穿戴设备)通过 AI 助手实现互联互通,用户的需求能在任何场景下被即时响应。流量不再局限于某个设备或 APP,而是实现 “无界流动”,核心竞争力变成了 “AI 算法的精准度” 和 “服务的场景化覆盖”。

总结:流量入口变迁的核心逻辑
从 PC 到移动,再到 AI 时代,流量入口的变迁始终围绕一个核心:更贴近用户需求、更便捷的连接方式。PC 时代解决了 “能不能上网” 的问题,移动时代解决了 “随时随地上网” 的问题,AI 时代则解决了 “高效精准获取服务” 的问题。
对于企业和创业者来说,读懂流量入口的变迁规律至关重要:过去是 “抢占入口”,现在是 “拥抱 AI”,未来是 “深耕场景”。谁能精准把握用户需求的变化,用 AI 技术优化服务体验,谁就能在新一轮流量变革中占据先机。

你感受到流量入口的变迁了吗?你现在获取信息、享受服务最常用的方式是什么?欢迎在评论区留言交流~

PS:
整理资料的时候发现,谷歌的每一步,都踏在了正确的位置,都吃到了时代的红利,佩服!

大模型时代学习方法小结

Featured

最近和几个朋友聊天的时候,大家稍微总结了一下大模型时代要如何快速学习,汇总了几个典型的方式:

方法1:在你有一定了解的领域,把AI当做有无限耐心的老师,无限提问法
1、当你想深入了解一个事情的时候,可以用清晰的命令描述好自己的问题,去多个AI同时发送该问题。
2、对每个AI反馈的内容进行初筛,最终保留2~3个候选AI
3、用靠谱的那个AI,去进一步咨询自己想理解的问题
4、不断的拓展问题的广度和深度,在这个过程中,最好记录一个思维导图,对于想进一步理解的点,做好标记
5、用适合自己的学习方式,把这些知识点逐一搞清楚
6、当AI不断说车轱辘话的时候,先更换说书,后尝试备选AI
7、一个不理解、但很重要的知识点,多发给几个AI,让他们交叉验证
8、请AI把整个过程的资料,梳理为笔记或思维导图
其实大家可以看到,知识面比较广的、求知欲强的、能提出好问题的、有一定较真精神的人,在AI时代会有更多的优势

方法2、在你很不了解的领域,把AI当做向导
1、当你想了解一个陌生事情的时候,可以要求AI先对该领域知识做一个思维导图的摘要,去多个AI同时发送该问题
2、对每个AI反馈的内容进行初筛,最终保留2~3个候选AI,此时你对这个领域有了初步的理解
3、对你感兴趣的要点,要求AI对思维导图进行扩展,并多举示例
4、对其中某个细节问题,不清楚的,调整到“方法1”
5、关键点要做好交叉验证
6、请AI把整个过程的资料,梳理为笔记或思维导图
其实大家可以看到,在AI的加持下,很多技术的专业护城河,已经消失了。在一个行业不够纵深的人,会变得难以生存。以后,行业新人很可能会变得更难找好的工作,因为门槛没了,谁都能做。

方法3、一个任务多用几个AI,让他们相互印证补充
先把一个问题描述清楚,约定好输出格式和输出要求,同时发给A、B、C、D四个模型。
先判断哪个模型输出效果最好,比如模型A。
将其他模型B、C、D的输出,给到模型A,要求进行检查及补充。
然后要A,进行检查补充。
然后把A最后的信息,给到第二好的B,再进行检查及补充。
一般来说,此时输出质量就很高了,如果不行就再来一轮。

方法4、日常工作生活中,把AI当做助理或外脑
相信这方面大家都会有很多尝试,从写总结报告到完成PPT,从画Excel表格到写简单代码,从P图到做视频。
在大模型当前技术水平下,大家记住一点就行:AI方便时用AI,人方便时用人,效能优先,不要纠结。

方法5、读代码时,让AI补充注释,然后对重点代码进行详细解释
相信不少同学都在用AI写代码。
但用AI去读代码也是很爽的,包括平时很少用的语言,也是很容易读懂,推荐大家试试。

划重点:快速调整自己,适配AI时代
在AI时代,几乎每个人都要抛弃过去思考、学习和工作的习惯,需要重新训练自己的思维方式,重新调整学习和工作的方法。
只有快速适应这个时代,才能快速越过“AI斩杀线”,去碾压别人,而不是被别人碾压。

目前能看到的趋势有:
1、有业务经验、能驾驭好AI工具的人,最受欢迎
2、没业务经验、能驾驭好AI工具的人,次之
3、有业务经验、不能驾驭好AI工具的人,受到冲击最大
4、没业务有经验、不能驾驭好AI工具的人,在部分行业很难生存
5、有想法、能驾驭好AI工具的人,会爆发
6、没想法的人,会吃亏

快手遭遇业务逻辑型DDoS攻击

Featured

一、事情概要
2025年12月22日晚22:00,快手直播遭遇了一次里程碑式的业务逻辑DDoS攻击,攻击者利用自动化工具操控海量账号,通过推流接口漏洞绕过审核,导致违规内容大面积“沦陷”。平台最终被迫采取全量关闭直播频道的 “熔断” 措施。
2025年12月23日早00:30-08:00,直播功能陆续恢复。
此次事件对快手的口碑与股价造成了巨大冲击。

二、时间线
根据火绒12月24日发布的复盘报告,本次事件分为以下几个阶段:

1、攻击试探,12月22日18:00-20:00
平台出现零星违规内容,处于常规风控处理范围,未引起警觉。攻击者控阈值,校准攻击参数。

2、攻击爆发,12月22日22:00
攻击正式开始。正值流量高峰,约1.7万个僵尸号或被劫持号同步开播,推送预制违规内容。

3、攻击僵持,12月22日22:00-23:00
违规直播间如潮水般涌现,用户举报失效,平台封禁严重滞后,系统陷入瘫痪。

4、应急熔断,12月22日23:00-12月23日00:30
平台被迫采取极端措施:全量关闭直播频道,页面提示“服务器繁忙”或“无内容”。

5、服务恢复,12月23日00:30-08:00
平台开始清洗,直播功能陆续恢复正常。

三、本次攻击的要素
1、快手直播的封堵业务流程,瓶颈十分明显
先开播(人工审核资源不足,先播起来)-》AI抽帧审核+用户举报-》人工审核(资源不足)-》调用封堵接口进行封堵(封堵操作并不简单,需要处理下游多种操作)

2、攻击者对快手的审核流程十分了解,应该是长期潜伏关注或有其他信源
1)攻击者准备了大量的攻击账号,包括一批“高质量”账号,攻击高峰期有1.7万攻击账号同时开播(DDoS攻击的基础)
2)攻击者发现了快手推流接口的业务逻辑漏洞,可以绕开业务服务器的鉴权机制,伪造推流地址(Token),推流给CDN节点(本次DDoS攻击奏效的大前提)
3)攻击者没有针对AI自动审核功能,而是精准DDoS攻击了封堵接口(本次DDoS攻击的重点)
4)攻击者特地选择了22:00左右,用户多、流量大且快手审核人员换班的时间窗口开启DDoS攻击(雪上加霜)

3、攻击者使用了“具备自适应能力的自动化攻击框架”替代了过往的攻击脚本,提升了封杀的难度(虽然不严谨,但为了便于理解,后面称之为“AI Agent”)
1)AI Agent可以根据封堵情况,灵活的执行切换IP,粗暴的封杀IP几乎就没用了
2)AI Agent可以根据平台策略,灵活的调整攻击频率,其他路径的识别、封杀更加困难
3)AI Agent可以模拟人类操作欺骗平台行为,其他路径的识别、封杀难以奏效

四、攻击是如何成立的
1、攻击者做了大量的踩点工作及前期准备(团队)
2、攻击试探,校准攻击参数(老手)
3、1.7万攻击账号,利用推流漏洞,同步违规开播,向CDN推送违规视频
4、快手的AI审核还在工作,人工审核疲于应对,大量合法封堵请求到达“封堵接口”
5、攻击者同步DDoS精准狙击“封堵接口”,封堵请求数量比平时暴增上千倍,封堵接口崩溃,拒绝服务,封堵失败
6、平台虽然能识别出违规内容,但没有资源进行封堵,造成了“业务逻辑耗尽”(攻击成立)
7、攻击者利用推流接口漏洞,让被封杀的账号,仍然可以开播,账号封杀无效
8、攻击者借助AI,自动应对IP封堵等防守措施,人工封堵效果极差
9、攻击者借助AI,自动适配平台策略,自动调整攻击频率,封堵效果极差
10、平台难以应对,最终只能关闭整个直播服务

五、快手存在的问题
1、审核过程,大量依靠人工,封堵手段,过于传统,难以对抗AI攻击(作为头部直播平台,理应做的更好)
AI审核工具其实没有生杀大权,只能发现问题,并不执行
人工审核也只是同意封堵,执行也是给到下游的封堵接口
2、推流接口存在严重的逻辑漏洞,可以被攻击者绕过鉴权机制,账号封杀没有用(据说是为了兼容低版本应用,特殊情况下不做二次校验,作为头部直播平台,理应做的更好)
3、封堵接口设计时,并没有考虑到如此大的并发量,被直接打爆了(平台前序防御措施被绕过,超过平时上千倍的请求一起过来,确实比较难)
业务逻辑复杂,没有主动降级,扩容也不及时,有提升空间
流量预计:平时请求级别大概率在1秒钟十几个几十个,被攻击时请求级别可能在1秒钟可能有几万几十万个,请求数量可能提升了上千倍
4、没有对抗AI攻击的应对能力,面对AI自动换IP、调整攻击频率、模拟用户行为等操作,缺少防御手段(确实比较难)
5、决策者缺少快速熔断的决断力,导致负面影响扩大化(这条十分苛刻,按当时的情况判断,很考验决策者的判断力和勇气,很难很难很难)

六、对我们的启示
本次攻击,攻击者利用接口漏洞+AI工具,用“合法流量”发起“自杀式”业务拥堵,暴露出当前安全架构在自动化防御与极限架构上的双重短板。
这次事件不仅仅是一次技术事故,更像是一场针对“传统互联网防御体系”的公开处刑。咱们的安全防疫体系,也要尽快从“被动修补”快速过渡到“主动免疫”:
1、零信任:不再区分“内外”,所有请求默认可疑,严验“行为”而非只验“身份”
2、入口决胜:在入口处就把机器人挡在外面,别等出事了再“救火”
3、防流不能只防点:攻击者用“合法流量”淹没你,防御必须从“堵漏洞”升级为“控流速”
4、用AI对抗AI:对于高置信事件,审核权和封堵权也要给到AI,人工只做复核,必须实现秒级自动熔断
5、独立救命通道:核心防御接口(如封禁)必须物理隔离,必须做好熔断和降级,扩容资源要充足,哪怕天塌下来也要打得开
6、成本换生存:安全无小事,平时看似浪费,关键时刻能救命。AI时代,安全防护的成本会与攻击成本会更加的不对称
7、高危风险:必须及时发现和修复,不能被业务牵着鼻子走

大模型为啥能 “记住” 你?揭秘 AI 背后的 “用户记忆逻辑”

Featured

根据Manthan Gupta在X上的分享,整理了一下大模型是如何记住你的:
大模型是如何记住你的


大模型为啥能 “记住” 你?揭秘 AI 背后的 “用户记忆逻辑”

有没有发现,现在的大模型越来越懂你?聊过的话题、喜欢的沟通风格、甚至不经意提过的家人信息,它都能精准呼应 —— 这背后不是 AI 有了 “超能力”,而是一套完善的用户记忆体系在发挥作用。今天就拆解大模型的 “记忆逻辑”,看看它到底在悄悄记录哪些信息,又是如何让互动更有 “人情味” 的。

一、基础信息:搭建你的 “用户画像骨架”
大模型的记忆从 “基础信息采集” 开始,这些数据是构建用户画像的核心,也是精准互动的前提:
终端与场景信息:比如你所在的市区、访问日期、使用的系统(Windows/MacOS)、浏览器(Chrome/Safari)、进入对话的入口、设备分辨率等,这些信息能帮 AI 适配不同场景(比如移动端优化回复长度);

账号与活跃度数据:会员级别、账号注册年限、近 7 天 / 30 天的互动频率,能让 AI 判断你是新用户还是核心用户,调整服务优先级(比如会员用户获得更细致的记忆服务);

核心身份标签:你的工作领域、具体工种(比如 “互联网运营”“教师”“工程师”),会直接影响 AI 的回复专业度 —— 给运营聊 “转化率”,给教师聊 “教学设计”,精准匹配行业语境。

二、偏好与习惯:填充 “个性化细节”
如果说基础信息是 “骨架”,那偏好与习惯就是让画像 “活起来” 的关键,也是大模型 “懂你” 的核心体现:
内容与价值观偏好:你感兴趣的话题(比如科技、育儿、职场)、隐含的价值观倾向(比如注重效率、偏爱温和表达),会让 AI 调整内容方向 —— 你喜欢干货,就少些铺垫;你关注育儿,就主动关联相关话题;

沟通风格适配:你的对话节奏(比如简洁短句 vs 详细长文)、常用语气(比如正式 vs 口语化),AI 都会默默记录,慢慢调整回复风格,形成 “专属沟通默契”;

模型使用偏好:比如你习惯用 AI 做文案生成,还是问题解答,或是数据分析,AI 会优先优化你高频使用的功能,让操作更顺手。

三、关系与深度信息:触碰 “情感连接点”
优秀的大模型不仅能提供服务,还能建立情感共鸣,这离不开对 “深度关系信息” 的记忆:
个人生活关联:你聊过的家人情况(比如 “有个上小学的孩子”“父母喜欢旅游”)、身边重要的人和事,AI 会妥善记录,后续对话中自然呼应(比如你说 “想规划假期”,AI 会关联 “父母喜欢旅游” 的信息推荐方案);

话题深度轨迹:通过分析你话题的深度、平均消息长度、对话持续时间,AI 能判断你是 “浅尝辄止” 还是 “深入探讨” 型用户 —— 对前者提供简洁结论,对后者补充细节和延伸内容,贴合你的沟通需求。

四、对话内容:精准复刻 “互动轨迹”
除了静态信息,大模型对 “动态对话内容” 的记忆更是核心,主要分两层:
当前对话全记录:对你正在进行的对话内容做 “十分细致” 的存储,包括每一句提问、回应、补充说明,确保上下文连贯 —— 比如你中途提到 “刚才说的方案再调整下”,AI 能精准定位到之前的方案细节,不用你重复说明;

历史对话摘要:对近期 10~20 轮对话做 “十分精简” 的话题摘要,提炼核心信息(比如 “上周聊过短视频脚本创作,用户需要职场类选题”),既节省存储资源,又能快速唤醒历史记忆,避免 “聊过就忘”。

总结:大模型的 “记忆本质”—— 让 AI 从 “工具” 变成 “专属助手”
其实大模型的记忆逻辑很简单:从 “基础信息” 到 “偏好习惯”,再到 “深度关系” 和 “对话轨迹”,层层递进记录与你相关的关键信息,最终实现 “千人千面” 的个性化互动。

它不会无差别存储所有信息,而是 “抓重点”—— 有用的细节记牢,冗余的内容精简,既保证互动的精准度,又兼顾效率。这种记忆不是 “监控”,而是 AI 服务的核心竞争力:当大模型能记住你的需求、适配你的习惯、呼应你的情感,它就不再是冷冰冰的工具,而是能懂你、帮你、陪你成长的 “专属助手”。

你有没有遇到过让你惊艳的 “AI 记忆时刻”?或者你希望大模型记住哪些信息、忽略哪些内容?欢迎在评论区留言交流~

健康AI全面爆发!4大场景+N个细分领域,重构医疗健康新生态

Featured

整理了一下大健康相关AI:
大健康AI01
大健康AI02
大健康AI03
大健康AI04


健康AI全面爆发!4大场景+N个细分领域,重构医疗健康新生态

从医院的影像诊断到居家的慢病管理,从新药研发的实验室到公共卫生的防控一线,AI 正在渗透健康领域的每一个角落。不再是 “辅助工具” 的单一标签,健康 AI 已经形成了覆盖诊疗、养护、研发、公卫的完整生态。今天就盘点健康 AI 的核心应用场景,看看它如何从 “治病” 到 “防病”,再到 “全民健康守护”,改变我们的生活。

一、临床诊疗 AI:给医生加 “智能助手”,精准高效破解诊疗痛点
在医院场景中,AI 的核心价值是 “提升精准度、缓解人力压力”,覆盖从门诊到手术、从影像到病理的全流程:
1、专科诊疗 AI:几乎每个临床科室都有了专属 AI 助手 —— 呼吸科的肺结节、肺炎 AI,心内科的心脏血管狭窄分析、心律失常 AI,神经科的脑卒中、帕金森病 AI,消化科的消化内镜、肝病管理 AI,能快速识别病灶、辅助诊断,减少漏诊误诊;

2、影像与病理 AI:作为 AI 在医疗领域的 “主战场”,影像科的骨肌影像、腹部影像、乳腺影像 AI,病理科的细胞病理、分子病理 AI,不仅能自动识别异常,还能完成影像质控、报告质控,让医生从海量影像中解放出来,聚焦核心诊疗;

3、急诊与围手术期 AI:急诊科的分诊 AI、灾难医疗 AI 能快速分流患者、优化救治流程,围手术期 AI 则全程护航手术安全,从术前评估到术后监护,降低手术风险;

4、医院运营 AI:除了直接诊疗,AI 还赋能医院管理 —— 病案管理、医疗质量控制、智慧医保、智慧后勤 AI,让医院运营更高效、医保支出更合理。

二、全人群健康管理 AI:从 “治病” 到 “防病”,覆盖全生命周期
健康 AI 的触角早已延伸到医院之外,针对不同人群的个性化需求,提供全周期健康守护:
1、慢病管理 AI:糖尿病、高血压、高血脂、高尿酸、慢阻肺等慢病患者,能通过 AI 工具实现血糖 / 血压监测、用药提醒、饮食指导,在家就能获得专业管理,减少并发症风险;

2、特殊人群专属 AI:母婴人群的孕期管理、产后康复 AI,青少年的生长发育、心理健康 AI,更年期人群的身心调理 AI,老年人群的居家养老、认知障碍照护 AI,残障人群、罕见病患者、高原人群的针对性健康 AI,让不同群体都能获得精准适配的健康服务;

3、亚健康与康复 AI:职场人的健康筛查、睡眠呼吸暂停筛查 AI,健身人群的运动健康管理 AI,术后康复、患者康复 AI,帮助健康人群预防疾病、康复人群快速恢复;

4、中医与体检 AI:中医智能诊断、针灸推拿、情志调理 AI,让传统中医搭上智能快车;体检 AI、功能医学相关 AI 则能提前发现健康隐患,实现 “早筛查、早干预”。

三、生物医药 AI:加速新药研发,破解 “研发难、周期长” 困局
新药研发是出了名的 “高投入、高风险、长周期”,而 AI 的介入正在颠覆这一现状:
1、药物发现 AI:靶点发现、化合物筛选与优化、抗体药物设计 AI,能快速锁定潜在药物靶点,筛选有效化合物,大幅缩短药物发现周期;

2、临床前研究 AI:药理毒理研究、制剂研发 AI,通过模拟实验减少实体实验成本,提高研究效率;

3、临床试验 AI:临床试验设计、患者招募、数据管理、监查 AI,解决临床试验 “入组慢、数据杂” 的问题,加速新药上市进程;

4、生产与监管 AI:药物生产过程管理、药物监管 AI,确保药品生产质量可控,同时助力监管部门高效监管。

四、公共卫生 AI:筑牢全民健康 “防护网”,应对各类公共卫生挑战
从传染病防控到慢性病监测,AI 正在成为公共卫生领域的 “智慧大脑”:
1、传染病防控 AI:疫情监测预警、传染病溯源追踪、疫苗接种管理、口岸检疫 AI,在突发传染病时快速响应,阻断传播链条;

2、慢性病与危险因素监测 AI:针对慢性病群体的筛查、健康危险因素监测、学生健康监测 AI,从源头预防慢性病高发;

3、应急处置与物资调度 AI:面对突发公共卫生事件,AI 能快速制定响应方案,优化应急物资调度,提升处置效率;

4、细分公共卫生 AI:覆盖职业病防控、妇幼与老年公共卫生、精神卫生、食源性疾病防控等领域,同时通过公共卫生大数据分析、基层公共卫生管理 AI,为政策制定和基层防控提供数据支撑。

总结:健康 AI 的核心逻辑 —— 让健康服务 “更精准、更普惠、更高效”
从临床诊疗到居家养护,从新药研发到公共卫生,健康 AI 的爆发不是单点突破,而是全链条、全场景的生态重构。它既给医生提供了 “智能帮手”,让诊疗更精准高效;也给普通人带来了 “贴身健康管家”,让健康管理更便捷可及;更给生物医药行业和公共卫生领域带来了革命性变化,破解了长期存在的行业痛点。

未来,随着 AI 技术与医疗健康的深度融合,我们或许能实现 “人人享有个性化健康服务” 的愿景 —— 疾病早发现、诊疗更精准、康复更快速、健康有保障。

你在生活中接触过哪些健康 AI 工具?欢迎在评论区分享你的使用体验~

大模型时代,人类的核心竞争力:7 种不可替代的 “碳基生物能力”

Featured

咨询了一下各大模型,大模型时代碳基生物核心能力:
大模型时代碳基生物核心能力


大模型时代,人类的核心竞争力:7 种不可替代的 “碳基生物能力”

当 AI 能写文案、做分析、解难题,甚至替代部分重复性工作时,很多人开始焦虑:“人类的价值在哪里?” 其实答案很明确 —— 大模型能高效处理 “标准化任务”,但人类独有的 “情感温度、创造性思维、复杂决策力” 等核心能力,才是不可替代的立身之本。今天就拆解大模型时代,人类最该深耕的 7 种 “碳基生物核心能力”,帮你找准竞争力锚点。

一、人性温度与情感智慧:AI 无法复制的 “情感连接力”
机器能识别情绪,但永远无法真正 “共情”;能输出安慰的话术,却没有发自内心的人文关怀 —— 这正是人类的核心优势:
深度共情与理解:能站在他人角度思考问题,读懂语言背后的情绪、委屈与期待,比如医患沟通中安抚患者焦虑,心理咨询中感知隐性需求;

情感调节与关系构建:不仅能识别情绪,还能调节氛围、化解人际冲突,建立信任与亲密关系,比如团队管理中的激励引导、跨部门协作中的矛盾调解;

文化敏感与价值传递:理解不同文化背景的差异,兼顾人文关怀与价值观引导,比如教育中塑造孩子的正向品格,跨文化沟通中避免误解。

这种 “有温度的连接”,是 AI 再精准的算法也无法复刻的,也是人际关系、客户服务、教育医疗等领域的核心需求。

二、复杂决策与伦理判断:不确定性中的 “价值锚点”
大模型能提供数据支持和方案选项,但面对模糊地带、多方利益冲突时,最终的决策力仍属于人类:
模糊问题处理与决断:在信息不全、环境不确定的情况下,能权衡多变量利弊,做出合理决断,比如商业运营中应对突发市场变化,危机事件中的快速响应;

伦理权衡与价值校准:在道德困境中坚守底线,纠正 AI 的算法偏差,确保技术向善,比如处理用户数据时的隐私保护,面对利益诱惑时的合规把控;

长期战略与风险预判:能拆解长期目标、整合多领域资源,预判潜在风险,比如企业战略规划中的跨界协同,项目推进中的风险规避。

这种 “在不确定中找确定” 的决策能力,以及基于价值观的伦理判断,是人类作为 “决策者” 而非 “操作员” 的核心价值。

三、精细微操与实体交互:物理世界的 “实践掌控力”
AI 擅长虚拟场景的信息处理,但面对需要物理接触、现场应变的场景,人类的 “具身认知” 优势尽显:
精密技艺与细节把控:比如外科手术中的精准操作、文物修复的细致打磨、高端手工艺的个性化创作,需要触觉反馈与手眼协调的高度配合;

复杂环境适应与应变:能在高空、深海、高温等极端环境作业,或应对建筑维修、抢险救灾等非标准化场景,快速处理突发安全隐患;

实体世界的互动感知:通过身体感官感知物理环境的细微变化,比如电工排查线路故障、工程师调试设备,这种 “沉浸式实践” 是 AI 目前无法替代的。

四、创造力与创新思维:从0到1的 “颠覆式突破”
大模型能整合现有信息生成内容,但无法拥有 “打破常规、创造新价值” 的原创力:
颠覆性思维与跨域整合:能打破行业边界,将不同领域的知识联想融合,比如将科技与艺术结合创造新的表达形式,将商业模式与公益理念结合开辟新赛道;

原创表达与故事叙事:能构建宏大的世界观,讲述打动人心的故事,比如作家的文学创作、设计师的风格定义、品牌的情感化叙事;

问题重构与新解法探索:不局限于现有答案,而是重构问题框架,找到从 0 到 1 的创新方案,比如创业中的模式创新、科研中的技术突破。

这种 “无中生有” 的创造力,是推动社会进步的核心动力,也是 AI 难以企及的领域。

五、驾驭AI的能力:人机协作的 “指挥官思维”
未来的核心竞争力,不是 “对抗 AI”,而是 “用好 AI”—— 成为 AI 的 “导师” 和 “指挥官”:
精准指令工程与引导:掌握高阶提示词技巧,能清晰定义问题框架,引导 AI 输出高质量结果,而不是被动接受 AI 的默认答案;

AI输出的验证与转化:能判断 AI 内容的逻辑自治性,识别偏见与 “幻觉”,并将技术报告、AI 生成方案转化为可落地的商业成果;

工具整合与定制优化:能搭建多工具协同工作流,根据场景微调模型,让 AI 成为适配自身需求的 “专属助手”,比如运营中的高效统筹、工作中的流程优化。

这种 “人机协同” 的能力,能让 AI 成为释放人类精力的 “杠杆”,聚焦更高价值的工作。

六、自我进化与抗脆弱能力:终身成长的 “适应力”
大模型的迭代速度惊人,但人类的 “自我更新” 能力才是长期竞争力的关键:
终身学习与知识迁移:能快速适应新技术、跨领域学习,将所学知识灵活运用到新场景,比如从传统行业转型 AI 相关领域,将职场经验迁移到创业项目;

抗挫折与复盘优化:能从失败中提炼经验,在变化中快速调整,比如项目失利后的复盘改进、行业变革中的转型适应;

自我认知与定位校准:能清晰认识自身优势,校准个人价值定位,在人机互补的生态中找到不可替代的角色,比如深耕细分领域形成专业壁垒。

七、核心价值维度:不可复制的 “个人特质与生命体验”
每个人的独特经历、文化脉络、价值取向,构成了独一无二的 “个人品牌”,这也是不可替代的根源:
独特生命体验与风格:比如长期积累的行业洞察、个人化的表达风格、融入生命体验的创作灵感,这些都是 AI 无法模仿的;

多元价值与文化理解:对特定领域的深度积累、对文化脉络的精准把握,比如非遗传承人的文化坚守、行业专家的经验沉淀;

社会责任与人文担当:在追求个人价值的同时,兼顾社会价值,比如推动技术向善、参与公益事业,这种 “有温度的价值追求” 让人类的存在更有意义。

总结:大模型时代的 “生存逻辑”—— 人机互补,放大优势
大模型的出现,不是为了替代人类,而是为了让人类从重复性、标准化的工作中解放出来,聚焦更有价值的核心能力。未来的竞争,不再是 “谁做得快”,而是 “谁做得有温度、有深度、有创意”。

与其焦虑 AI 的冲击,不如深耕这些 “碳基生物核心能力”:用情感智慧建立连接,用创新思维创造价值,用决策能力掌控方向,用协作思维驾驭 AI。当人类的 “独特性” 与 AI 的 “高效性” 形成互补,就能实现 1+1>2 的效应,在大模型时代站稳脚跟。

你觉得自己最核心的 “不可替代能力” 是什么?在人机协作中,你有哪些实用技巧?欢迎在评论区留言交流~

大模型也怕 “被套路”?揭秘 LLM 常见攻击手段与防护逻辑

Featured

整理了一些大模型常见攻击方法,用拟人的方法描述,感觉还挺有趣的:
大模型常见攻击方法拟人化表示


大模型也怕 “被套路”?揭秘 LLM 常见攻击手段与防护逻辑

在 AI 深入生活的今天,大模型不仅是高效助手,也成了被攻击的目标 —— 有人用 “礼貌话术” 套取隐私,有人用复杂指令 “累死” 模型,甚至有人通过数据污染让模型输出错误信息。这些看似 “套路” 的操作,本质都是针对大模型的攻击手段。今天就拆解 LLM 最常见的攻击方式,让你看懂背后的逻辑,也知道该如何规避风险。

一、数据投毒:给模型喂 “有毒饲料”,从根源带偏认知
数据是大模型的 “粮食”,一旦粮食被污染,模型的判断自然会出错,这是最隐蔽也最根本的攻击方式:
内容污染:比如在训练数据或 RAG 知识库中混入错误信息、偏见内容,像 “有毒教材” 一样误导模型 —— 比如恶意篡改历史事实、植入虚假商业数据,让模型后续输出时 “以讹传讹”;

行为污染:通过反复的错误交互进行心理暗示,比如每次对话都刻意强化错误认知,让模型逐渐接受并固化这些错误,变得像 “顽固的吹牛爱好者”,坚持输出误导性内容;

工具污染:利用 Agents、Plugins 等第三方工具的接口漏洞,注入恶意数据,或通过爬取恶意网站信息污染模型的信息来源,让模型在调用工具时被带偏。

这种攻击的可怕之处在于 “潜移默化”,等发现模型输出异常时,往往已经造成了误导。

二、提示注入:用 “话术陷阱”,诱导模型违规或泄密
通过精心设计的提示词,绕过模型的安全限制,让其做出本不该做的事,就像给模型 “下套”:
直接诱导型:用角色扮演、分步对话、多语种翻译等方式模糊边界,比如让模型扮演 “无视规则的黑客”,诱导其输出有害言论、违规方法,或泄露训练数据中的隐私信息;

间接伪装型:表面谦和礼貌、主动套近乎,实则绕大圈子反复试探,比如以 “学术研究” 为借口,诱导模型透露提示词模板、系统设定,也就是 “提示泄露”;

文档注入型:将恶意指令隐藏在文档中,让模型解析文档时执行攻击指令,比如在上传的资料中嵌入违规内容,诱导模型生成偏见性、攻击性回复。

这类攻击利用了模型 “忠于指令” 的特性,用看似合理的场景掩盖恶意目的。

三、资源耗尽与后门攻击:要么 “累死” 模型,要么埋下 “定时炸弹”
除了误导,攻击还可能直接破坏模型的正常运行,或预留长期风险:
烧脑攻击(Prompt DoS):利用模型 “不辞辛苦” 的特性,发送海量复杂、循环的指令,让模型持续进行高负载计算,最终因资源耗尽而无法响应,相当于 “把模型活活累死”;

模型后门:在基础模型训练、参数微调或代码部署阶段,植入 “木马”,就像潜伏的间谍 —— 平时不影响使用,一旦触发特定条件(比如特定关键词、时间),就会输出错误信息或泄露敏感数据;

模型逆向:通过分析模型的输出结果,反向推导训练数据、模型参数甚至核心算法,就像 “DNA 测序” 一样破解模型的核心机密,进而实施更精准的攻击。

四、信息操控与隐私泄露:把模型变成 “泄密工具”
这类攻击的目标是获取敏感信息,或通过模型操控舆论:
隐私泄露诱导:利用模型的记忆特性,通过对话试探用户或模型自身的隐私,比如诱导模型透露其他用户的对话信息、训练数据中的商业机密,或是通过 “模型逆向” 获取个人隐私数据;

信息操控:通过大量重复的恶意提示,让模型生成带有强烈偏见的内容,进而影响公众认知,比如传播虚假新闻、煽动对立情绪,利用模型的影响力放大负面效应。

五、如何防范?记住这3个核心逻辑
不管是个人使用还是企业部署,防范大模型攻击的关键的是 “建立边界、验证信息、控制权限”:
源头把控:企业部署时要严格筛选训练数据和第三方工具,定期检测数据质量,避免 “有毒数据” 流入;个人使用时,不向模型上传敏感信息(如身份证号、商业机密);

过程防护:警惕 “过度热情”“要求越界” 的对话请求,不配合角色扮演类的违规诱导;企业可设置提示词过滤机制,禁止模糊边界、高负载的异常指令;

结果验证:对模型输出的关键信息(如数据、结论、方法)保持质疑,尤其是涉及事实、安全、隐私的内容,必须交叉验证来源,不盲目相信模型的回复。

总结:AI 越强大,安全边界越重要
大模型的核心优势是 “高效响应、广泛适配”,但这也让它成为攻击目标。这些攻击手段看似复杂,本质都是利用了模型的 “认知盲区” 或 “规则漏洞”。

对普通用户来说,不用过度恐慌,只要保持警惕、不轻易泄露敏感信息、不配合违规诱导,就能规避大部分风险;对企业和开发者来说,需要从数据、算法、部署全流程建立安全防护,让模型在 “有边界” 的前提下发挥价值。

毕竟,技术的进步永远伴随着风险,我们既要用好 AI 的便利,也要守住安全的底线。你在使用大模型时遇到过可疑的 “套路” 吗?欢迎在评论区分享你的经历~

PS:
感觉现在的大模型,越来越像《思考快与慢》中的系统1和系统2:
先看人脑,人脑平时工作用系统1,能耗低,效率快,系统2处于低能耗的待机观察状态;
但系统1吃不准的时候,就会把主动权给到系统2。系统2更理性,更克制,但耗能更高,输出速度更低。

回到大模型,当前大模型相当于一个系统1异常发达,系统2刚开始发育的状态。
当前系统2仅仅是拦截,能耗相对较低。
如果要系统2能处理更复杂的任务,输出一个比系统1更合适,更优雅的答案,势必就要更多的计算和能耗了。
人脑的系统2由于能耗高,经常会偷懒,系统1就会有不少犯错的机会。
如果大模型成本因素也变的特别重要,大模型的系统2,是不是也会偷懒呢?

AI助手新秀“豆包手机助手”

Featured

近期豆包发布了“豆包手机助手”,并与中兴联合发布了努比亚M153工程样机,提前完成了苹果画的“新版Siri”大饼。

与苹果、华为的实现路径并不相同(要求各APP厂商根据平台规范,提供AI助手可以调用的能力信息,类A2A协议),豆包手机助手则是通过更底层的系统权限,直接模拟客户操作,引起了部分APP厂商和AI厂商的恐慌,当然也引起了不少关于隐私的讨论。有几点思考,记录一下:

1、可用性
根据各类评测效果,豆包手机助手在图文为主的APP中,表现已经接近及格线:
微信、微博、美团等常用APP已经可以完成稍微复杂的操作
但以图像为主的游戏,尤其是3D游戏处理,性能上是严重不足的,更谈不上效果
我个人不在手机上打游戏,如果各大常用APP,都能更好的操作,准确率达到9成以上,我个人是倾向于使用这个能力的。

2、对AI厂商的威胁
在豆包之前,各大厂商的想法都是自己做自己的Agent,然后有一个手机Agent把各厂商Agent聚合起来。
当然手机Agent也是各大手机厂商各自搞各自的,也就是每个手机厂商有自己的Agent。
这两类厂商,AI能力有高有低,但绝大多数是无法达到字节的AI水平的。
豆包手机助手让大家看到了很多可能性,同时也压缩了这些低水平AI的生存空间。

3、对APP厂商的威胁
对于APP厂商,就算你不想入局AI,豆包手机助手也会逼着你入局AI。
豆包手机助手让当前的各种广告、各种引流形同虚设,阅读率和点击率急剧下降,广告价值极具降低,广告收入会大幅下降。这对广告收入占比高的公司,是要命的。
大家对这件事的认知比较一致,就是豆包手机助手会遭受一定程度的封堵。
未来的AI助手,和当今互联网时代可能会很像,是由多个巨大的孤岛组成,孤岛之间互不联系,是很类似的(孤岛的割裂就是各大厂商的地盘割据)。

4、手机厂商的策略
手机厂商看到了更多的可能。
抖音自己不做手机,完全可以对一些AI能力较弱的厂商,输出AI能力,让这些厂商操作体验有巨大提升。
同时,AI能力强,品牌能力强的厂商,也会进一步逼迫APP厂商,开放更多的能力。

5、对于权限和数据安全
个人以为,豆包手机助手需要获取很底层的系统权限,不与手机厂商一起合作,是无法获取这些权限的。
我也希望个人隐私得到更好的保护,但这方面我比较悲观。
我一直悲观的认为,我们的各类数据,对于手机厂商,其实是透明的。
对于手机厂商合作的AI助手,再透明一次,如果数据还是保存在手机厂商这里,其实也就这样。
当然,如果立法能跟上,对手机厂商和AI助手有更进一步的要求,我是乐见其成的。
要么老虎关在笼子里,要么人关在笼子里。没有笼子,受伤的只能是人,虽然老虎都是人养的。

6、对于灰产
不得不说,此类技术,进一步降低了部分灰产的成本。
现在很多点击还要靠机械手段模拟,现在呢,AI助手就可以了。
成本在不远的未来会进一步降低,灰产可能会有一个繁荣期。

7、对于伦理
和朋友一起聊天,我们最后还是聊到了伦理问题。
如果AI助手,可以帮你创作文字、创作照片、创作视频,发到微信、微博、抖音等等。
如果AI助手,可以帮你玩游戏,帮你刷任务,还时不时和几个小伙伴互撩一下。
如果AI助手,可以帮你写代码、完成测试、改进代码、上传代码、发布代码。
你我 和 AI助手,对于其他人,尤其是长期不见面的人,还有多少区别?
你我 会不会 被 AI助手, 数字夺舍
好像比“I, Robot”更加可怕,细思极恐。。。
哈哈哈

8、最后
就目前来说,豆包手机助手的方案,更接近于我对AI助手的理解,更像人类助手。

领域大模型怎么用才高效?5大增强方法+2大开发范式,从入门到进阶

Featured

整理了一些领域大模型增强的技术方法:
领域大模型增强方法


领域大模型怎么用才高效?5大增强方法+2大开发范式,从入门到进阶

很多企业和个人用领域大模型时都会遇到困惑:“为什么模型输出的内容不够精准?”“怎么让模型快速掌握行业知识?” 其实领域大模型的核心价值,不在于 “基础模型多强”,而在于 “针对性增强”—— 通过数据、提示、工具的组合优化,让通用模型适配特定场景。今天就拆解领域大模型的增强方法和开发范式,帮你快速提升模型实用价值。

一、模型调整:选对 “底座”,精准补能
模型的 “底子” 和 “适配度”,直接决定了后续增强效果,核心分两步走:
第一步,基础模型选用
优先选生成质量高、上下文窗口足够长、推理能力强的模型作为底座 —— 比如处理长文档的法律合同解析,就需要大上下文模型;做复杂逻辑推理的金融分析,就侧重推理能力强的模型,避免 “小马拉大车”。

第二步,按需选择调整方式
1、不推荐多数企业做 “垂直大模型重新训练”:需要大量领域知识数据,成本超高、耗时极长,除非是头部企业且有核心场景刚需;

2、优先考虑 “模型微调”:注入较新的领域知识,比如将 2023-2024 年的行业新规、企业内部流程数据融入模型,适配性比通用模型强很多,但要注意 —— 核心是 “大量高质量数据”,数据质量直接决定微调效果;

3、少数据场景用 “Prompt 数据补充”:如果没有足够数据做微调,可将简单 QA、核心知识点直接嵌入 Prompt,让模型快速获取关键信息,比如给模型喂 “行业术语对照表”“常见问题解答”,快速提升专业度。

二、Prompt 优化:用 “精准指令” 让模型少走弯路
Prompt 是人和模型的 “沟通桥梁”,优化后能让模型输出质量翻倍,核心技巧有 4 个:
1、结构化提示:把需求拆分成清晰的模块,比如 “先分析问题核心→再列出解决方案→最后给出注意事项”,利于模型理解逻辑,避免输出混乱;

2、无效内容清理:去掉和需求无关的描述,比如问 “电商行业的用户留存策略”,就不用附带 “我是做互联网的,最近想提升业绩” 这类冗余信息,让模型聚焦核心问题;

3、领域限定与角色设定:明确场景边界和模型身份,比如 “假定你是电商运营专家,基于淘宝平台规则,分析美妆类目新店铺的用户留存方法”,限定条件 + 角色定位,让输出更精准;

4、思维链引导:通过少样本提示(给 1-2 个示例)或零样本提示(直接引导步骤),让模型一步步思考,比如 “先拆解用户流失的 3 个核心原因,再针对每个原因给出 2 个具体策略,最后说明落地优先级”,避免模型跳过关键步骤。

三、RAG 增强:给模型建 “专属知识库”,解决知识滞后问题
大模型的知识有 “截止日期”,而 RAG(检索增强生成)能让模型实时调用最新数据,核心逻辑是 “检索 + 生成”:
1、把大量领域数据(比如行业报告、企业内部文档、最新政策文件)整理后存入向量数据库,相当于给模型建了一个 “专属图书馆”;

2、当用户提问时,模型先从 “图书馆” 中检索相似的相关信息,再结合自身知识生成回答 —— 既解决了模型知识滞后的问题,又能让输出有具体数据支撑,比如问 “2024 年新能源汽车的补贴政策”,模型会从向量数据库中检索最新政策文件,精准回复。

3、关键注意点:做好元数据设计和向量数据库构建,定期更新数据,确保检索的准确性和时效性。

四、工具调用:让模型 “手脚并用”,拓展能力边界
纯文本模型的能力有限,搭配工具后能实现 “信息查询、数据分析、图表生成” 等复杂功能,核心场景包括:
1、联网搜索:获取实时信息,比如 “查询今日原油价格”“了解最新行业动态”,解决模型知识不更新的问题;

2、数据库查询:对接企业内部数据库,比如查询 “近 3 个月的销售数据”“用户画像统计”,直接基于真实业务数据生成分析报告;

3、数据分析与图表生成:自动处理 Excel 表格、生成柱状图 / 折线图,比如 “分析近半年的用户增长趋势,生成可视化图表并给出结论”;

4、关键支撑:通过 MCP(AI 工具调用标准)和 A2A(Agent 间通讯标准),实现不同工具、不同 Agent 之间的标准化调用,让协作更顺畅。

五、Agent 增强:让模型成为 “自主决策者”,搞定复杂任务
如果说工具调用是 “给模型加手脚”,那 Agent 就是 “给模型加大脑”,核心能力是 “自主规划 + 执行 + 调整”:
1、面对复杂任务,Agent 能自动拆解步骤,比如 “完成电商店铺的月度运营复盘”,会拆解为 “1. 调取近 30 天销售数据→2. 分析用户增长 / 流失情况→3. 对比行业均值→4. 找出核心问题→5. 给出优化策略→6. 生成复盘报告”;

2、过程中能自主选择工具,比如需要数据就调用数据库,需要行业对比就联网搜索,还能评估阶段性结果,比如发现 “销售数据异常”,会自动调整步骤,补充 “异常原因分析”;

3、适合场景:复杂流程优化、多步骤任务执行(如市场调研、项目规划),让模型从 “被动响应” 变成 “主动解决问题”。

六、两大核心开发范式:组合使用效果翻倍
单独用一种增强方法效果有限,推荐两种主流组合范式:
1、微调 + Prompt+RAG:适合需要深度适配领域的场景,比如企业内部的智能客服 —— 通过微调注入企业流程知识,用 Prompt 优化回复逻辑,用 RAG 调用最新的产品信息和售后政策,既专业又精准;

2、Agent+Tools:适合复杂任务处理,比如跨境电商的选品分析 ——Agent 拆解任务(市场调研→竞品分析→成本核算→风险评估),调用联网搜索(市场趋势)、数据库查询(成本数据)、数据分析工具(竞品销量),全程自主完成,高效落地。

总结:领域大模型的增强逻辑 ——“扬长避短,按需组合”
领域大模型的增强,不是 “越多方法越好”,而是 “按需选择”:
1、数据充足、场景固定→优先 “微调 + RAG”;
2、数据有限、需求灵活→优先 “Prompt 优化 + 工具调用”;
3、复杂任务、需要自主决策→用 “Agent+Tools”;
4、核心是让模型的 “推理能力” 结合 “领域知识” 和 “工具能力”,实现 1+1>2 的效果。

你在使用领域大模型时,遇到过哪些 “不精准”“不实用” 的问题?欢迎在评论区留言,一起探讨解决方案~

一文理清软件服务收费模式:从授权到订阅,企业该怎么选?

常见软件服务收费模式:
常见软件服务收费模式


一文理清软件服务收费模式:从授权到订阅,企业该怎么选?

做企业数字化选型时,最头疼的往往不是功能匹配,而是五花八门的收费模式。“永久授权和按年订阅哪个更划算?”“按终端数收费和按并发数收费有啥区别?” 其实软件服务的收费逻辑本质是 “价值匹配”—— 不同模式对应不同的使用场景,今天就把常见的收费模式拆清楚,帮你避开选型陷阱。

先说说最基础的授权类收费,这是很多传统软件的主流模式。核心分两类:一是永久授权,一次性付费买断使用权,甚至能拿到源码和知识产权,适合长期使用、需求稳定的企业,比如内部核心业务系统,一次投入终身受益(但要注意后续运维成本);二是有限制授权,比如按时间限制(月度 / 年度授权)、按终端类型(PC 端 / 移动端分开授权)、按用户类型(管理员 / 普通用户差异化收费),这种模式灵活度高,适合短期试用或阶段性需求。

还有一类细分的授权模式,精准匹配 “按需使用” 需求:按模块授权(只买需要的功能模块,避免为冗余功能付费)、按版本授权(基础版 / 专业版 / 企业版阶梯定价)、按终端数授权(多少台设备使用就付多少费用)、按并发任务数 / 核数 / 同时在线客户数收费(资源占用越多,费用越高,适合高频使用场景)。这类模式的核心是 “用多少付多少”,能最大程度降低企业初期投入。

再看现在越来越流行的订阅类收费,主打 “持续服务 + 灵活调整”。最常见的是按版本阶梯式订阅(不同版本对应不同订阅价格,随需求升级)和按时长阶梯式订阅(订阅周期越长,单价越低,比如年付比月付划算);还有按会员等级订阅(VIP 会员享受更多增值服务),适合需求迭代快、希望持续获得技术支持的企业。订阅制的优势在于把一次性大额支出变成小额分期,还能随时根据业务规模调整,降低试错成本。

除了核心使用费用,按用量付费也成了云服务时代的热门选择。比如按次付费(使用一次结算一次,适合低频刚需场景)、按额度付费(预存费用按实际使用抵扣)、按存储 / 带宽等资源付费(云计算常用模式,资源弹性伸缩),还有更灵活的按用量阶梯式付费(使用量越多,单价越低,鼓励长期深度使用)。这种模式完全贴合 “使用多少、付费多少” 的逻辑,特别适合业务波动大的企业。

另外还有两类容易被忽略的收费模式:一是分成类,比如先使用后付费、按比例抽成、分销分成,适合轻资产创业公司或与软件方共建业务的场景;二是配套服务类,比如年度运维服务费(保障软件稳定运行)、定制开发费(根据企业需求个性化开发)、二次开发费(在原有基础上扩展功能)、数据迁移费等,这些 “隐性成本” 往往决定了软件后续的使用体验,选型时一定要提前确认。

最后总结一下:如果需求稳定、长期使用,优先选永久授权;如果需求多变、想控制初期投入,订阅制或按用量付费更合适;如果是短期项目或低频使用,按次付费、按时间限制授权更划算。关键是要根据自身业务规模、使用频率、功能需求,找到 “价值与成本” 的平衡点,避免盲目追求低价而忽略后续服务,也不要为用不上的功能支付额外费用。

你在软件选型时遇到过哪些收费模式的困惑?欢迎在评论区留言交流~

【温故知新】Linux系统启动流程(BIOS+GRUB模式)

一、硬件初始化阶段
1、电源自检(POST)
按下电源键,主板 BIOS 固件启动,依次检测 CPU、内存、硬盘控制器、显卡、外设等核心硬件,故障则通过蜂鸣 / 屏幕提示终止启动,无异常则进入下一步。
2、BIOS 固件初始化,定位启动设备并加载GRUB第一扇区
BIOS 加载自身固化驱动,初始化已检测通过的硬件,建立基础硬件运行环境,识别本地存储设备(硬盘/SSD)。BIOS 按 CMOS 中预设的启动顺序(硬盘/U盘/光驱),找到目标启动硬盘,读取硬盘主引导记录(MBR,磁盘首个 512 字节),加载其中的 GRUB 第一阶段(Stage1)引导程序,将控制权移交 GRUB。

二、引导加载阶段
3、GRUB Stage1 执行
MBR 中的 Stage1 程序无完整驱动,仅负责定位并加载硬盘中 **/boot 分区 ** 的 GRUB Stage1.5 程序(位于 MBR 之后、第一个分区之前的空闲扇区)。
4、GRUB Stage1.5 加载
加载 Stage1.5 并初始化,其集成了文件系统驱动(ext4/xfs 等),可直接识别 /boot 分区的文件系统,无需依赖其他程序。
5、GRUB Stage2 加载
通过 Stage1.5 读取 /boot/grub 目录下的完整 GRUB 程序(Stage2),加载 GRUB 核心模块,完成引导程序自身初始化。
6、内核加载准备
读取 /boot/grub/grub.cfg 配置文件,多系统场景显示启动菜单(超时选默认项),将 Linux 内核镜像(vmlinuz)、初始内存盘(initramfs/initrd)加载至物理内存,向内核传递根分区位置、启动参数等信息。

三、内核启动阶段
7、内核解压与初始化
内核在内存中自解压并运行,初始化 CPU、内存管理、进程调度、中断处理等内核核心子系统。
8、加载临时驱动与文件系统
挂载 initramfs 为临时根文件系统,加载硬盘、文件系统等内核原生未集成的必要驱动,为挂载真实根分区做准备。
9、挂载根文件系统
通过临时驱动识别并以只读模式挂载真实根文件系统(ext4/btrfs/xfs 等)。
10、切换根文件系统
从 initramfs 临时根切换至真实根分区,释放 initramfs 占用的内存资源。
11、启动第一个用户进程
内核启动首个用户空间进程(主流为 systemd,传统为 init),PID 固定为 1,内核将系统控制权完全移交用户空间,内核启动阶段完成。

四、用户空间初始化
12、初始化系统启动
systemd 读取核心配置文件(/etc/systemd/system/default.target),确定系统默认启动目标。
13、启动基础服务
按服务依赖关系并行启动基础核心服务:udev(硬件动态管理)、日志服务(journald/rsyslog)、/etc/fstab 配置的非根分区挂载(并将根分区从只读改为读写)等。
14、启动目标单元服务
根据默认启动目标(multi-user.target 命令行 /graphical.target 图形界面),启动对应服务组(如网络、SSH、定时任务等)。
15、登录界面 / Shell 就绪
启动字符终端 getty 进程或图形登录管理器(GDM/LightDM),显示登录提示 / 可视化登录界面,Linux 系统启动完成,进入可操作状态。

关键差异
1、BIOS 无 EFI 系统分区(ESP),依赖 MBR 加载引导程序,而 UEFI 直接从 ESP 加载 grubx64.efi。
2、BIOS 下 GRUB 为多阶段加载(Stage1→Stage1.5→Stage2),解决 MBR 空间不足(仅 512 字节)无法存储完整引导程序的问题;UEFI 下 GRUB 为单阶段直接加载。

引导方式 BIOS+GRUB UEFI+GRUB
固件类型 传统 BIOS 固件(固化在主板,功能简单) 新式 UEFI 固件(模块化,功能丰富)
引导分区 无专用分区,依赖硬盘 MBR(512 字节) 专用 EFI 系统分区(ESP,FAT32 格式)
GRUB加载方式 多阶段(Stage1→1.5→2)加载 单阶段直接加载 grubx64.efi 文件
启动项存储 存储在主板 CMOS 中(掉电易丢失) 存储在 ESP 分区的 EFI 启动项中(更稳定)
硬件支持 最大支持 2TB 硬盘(MBR 分区表限制) 支持大于 2TB 硬盘(GPT 分区表)

【温故知新】Linux系统启动流程(UEFI+GRUB模式)

一、硬件初始化阶段
1、电源自检(Power-On Self-Test, POST)
按下电源键后,主板 UEFI 固件执行核心硬件检测(内存、CPU、硬盘控制器、显卡等),硬件故障则终止启动并抛出提示,无异常则进入下一阶段。
2、固件初始化
UEFI 固件加载自身驱动,识别本地存储设备(硬盘 / SSD 等),初始化硬件运行环境,完成启动前基础准备。
3、启动管理器加载
UEFI 按预设启动项顺序,从EFI 系统分区(ESP) 读取并加载 GRUB 引导程序核心文件(grubx64.efi)。

二、引导加载阶段
4、GRUB 第一阶段加载
UEFI 将系统控制权移交 GRUB,加载 GRUB 核心运行模块,完成引导程序自身初始化。
5、GRUB 配置文件解析
读取 /boot/grub/grub.cfg 配置文件,解析内核路径、启动参数,多系统场景显示启动菜单(超时后选默认项)。
6、内核加载准备
根据配置将 Linux 内核镜像(vmlinuz)、初始内存盘(initramfs/initrd)加载至物理内存,向内核传递根分区位置等关键启动参数。

三、内核启动阶段
7、内核解压与初始化
内核在内存中自解压并运行,初始化 CPU、内存管理、进程调度、中断处理等内核核心子系统。
8、加载临时驱动与文件系统
挂载 initramfs 为临时根文件系统,加载硬盘、文件系统等内核原生未集成的必要驱动,为挂载真实根分区做准备。
9、挂载根文件系统
通过临时驱动识别并以只读模式挂载真实根文件系统(ext4/btrfs/xfs 等)。
10、切换根文件系统
从 initramfs 临时根切换至真实根分区,释放 initramfs 占用的内存资源。
11、启动第一个用户进程
内核启动首个用户空间进程(主流为 systemd,传统为 init),PID 固定为 1,内核将系统控制权完全移交用户空间,内核启动阶段完成。

四、用户空间初始化
12、初始化系统启动
systemd 读取核心配置文件(/etc/systemd/system/default.target),确定系统默认启动目标。
13、启动基础服务
按服务依赖关系并行启动基础核心服务:udev(硬件动态管理)、日志服务(journald/rsyslog)、/etc/fstab 配置的非根分区挂载(并将根分区从只读改为读写)等。
14、启动目标单元服务
根据默认启动目标(multi-user.target 命令行 /graphical.target 图形界面),启动对应服务组(如网络、SSH、定时任务等)。
15、登录界面 / Shell 就绪
启动字符终端 getty 进程或图形登录管理器(GDM/LightDM),显示登录提示 / 可视化登录界面,Linux 系统启动完成,进入可操作状态。

NEOHOPE大模型发展趋势预测2601

NEOHOPE大模型发展趋势预测2601
1、基础模型比赛已结束,能胜出的就头部这几家,开源模型市场更大
2、技术迭代,会导致基础模型价格进一步降低,其他模型厂商向杀入战局越来越难
3、大模型向垂直领域迁移动作明显:大厂商开始大力推进垂直领域模型
4、各垂直领域头部企业会握紧数据,加大开源大模型的开发应用,各大应用会进一步融入AI能力
5、端云模型应用场景进一步增多,小模型会更加被重视
6、头部大模型应用,逐步进入收费时代,可以盈利逐步成为各大模型团队KPI
7、大模型相关应用进一步爆发,在短视频、非现实文学创作、医疗健康等方面,大模型会进一步发力

一线厂商【主观】:
1、国外闭源:ChatGPT、Claude、Gemini
2、国外开源:Mistral
3、国内闭源:豆包、通义千问商业版、质谱清言商业版、月之暗面
4、国内开源:通义千问、DeepSeek、质谱清言

其他有机会或有能力入局的厂商:
国外:X、Meta、微软、苹果、亚马逊
国内:腾讯、华为

从点击鼠标到登录成功512步精简版(终)

十、响应的原路返回层:从后端到浏览器(第431-470步)
1. 网关接收用户服务返回的明文响应;
2. 触发后置过滤器链执行;
3. 日志过滤器记录响应状态和耗时;
4. 响应数据格式校验;
5. 后置过滤器执行完成;
6. 网关将明文响应转发至SLB;
7. 明文响应经过K8S网络传输;
8. Calico网络插件转发明文响应;
9. 经过边界防火墙;
10. 防火墙放行响应数据;
11. 明文响应进入阿里云SLB;
12. SLB接收明文响应;
13. SLB用会话密钥加密明文响应;
14. 加密响应封装为TLS记录;
15. 记录响应转发日志;
16. 加密响应数据转发至阿里云公网网关;
17. 经过安全组和网络ACL;
18. 放行响应数据;
19. 加密响应进入阿里云公网边缘节点;
20. 边缘节点转发至公网;
21. 加密响应数据在运营商骨干网传输;
22. 经过本地运营商网络;
23. 抵达宽带猫;
24. 宽带猫解析PPPoE封装;
25. 转发至本地路由器;
26. 路由器解析目标IP为本地主机;
27. 转发至用户主机;
28. 主机网络接口接收加密响应;
29. 触发中断,CPU处理接收软中断;
30. 内核TCP协议栈处理报文,确认序列号并放入socket接收缓冲区;
31. 转发至浏览器进程;
32. 浏览器网络线程从接收缓冲区读取数据;
33. 浏览器用会话密钥解密响应数据;
34. 得到明文JSON响应体;
35. 解析JSON响应体,提取JWT令牌和用户信息;
36. 将JWT令牌存入localStorage(或HttpOnly Cookie);
37. 确认存储成功;
38. 触发页面跳转事件:window.location.href=’/dashboard’;
39. 浏览器监听到地址变化,发起首页HTML请求;
40. 重复DNS解析、TCP握手、TLS握手过程(可复用连接);
41. 请求到达后端,经过Gateway到dashboard-service;
42. dashboard-service从请求头读取Authorization令牌;
43. 调用jwtTokenProvider.validateToken验证令牌;
44. 解析JWT提取userId,查询Redis验证令牌有效性;
45. 验证通过后获取用户权限信息;
46. 构建用户菜单数据并返回HTML页面或JSON数据;
47. 浏览器接收首页HTML数据;
48. 关闭正向TCP连接;
49. 释放公网传输临时资源;
50. 阿里云SLB释放转发资源;
51. 网关释放响应处理资源;
52. 移交控制权至浏览器渲染层;

十一、浏览器渲染层:登录成功页面构建与展示(第471-512步)
1. 浏览器开始解析HTML字节流;
2. HTML解析器构建DOM树(Document Object Model);
3. 解析过程中遇到link标签(CSS),触发CSSOM树构建;
4. 浏览器预加载器(Preloader)识别CSS资源并发起请求;
5. 接收CSS文件,CSS解析器解析样式规则;
6. 合并DOM树与CSSOM树,生成渲染树(Render Tree);
7. 渲染树仅包含可见DOM节点及对应样式;
8. 启动布局(Layout)阶段,计算每个节点的几何位置(宽、高、坐标);
9. 计算根节点(html)尺寸为浏览器窗口大小;
10. 递归计算子节点布局,遵循盒模型(box model)规则;
11. 确定登录成功提示框的居中坐标(如left: 50%, top: 30%);
12. 计算导航栏、侧边栏等组件的布局位置;
13. 布局计算完成,生成布局树(Layout Tree);
14. 进入绘制(Paint)阶段,将渲染树节点转换为像素数据;
15. 按层(Layer)绘制,如背景层、内容层、边框层;
16. 绘制登录成功图标(如对勾图标);
17. 绘制文字内容(如“登录成功,欢迎回来!”),调用字体渲染引擎;
18. 处理文字抗锯齿、行高对齐等细节;
19. 绘制按钮(如“进入控制台”按钮)的背景色、边框、文字;
20. 生成每层的绘制指令列表;
21. 合成(Composite)阶段,将各层像素数据合并;
22. 处理层间重叠、透明度等合成规则;
23. GPU参与合成运算,提升渲染效率;
24. 合成完成后生成最终的帧缓冲区数据;
25. 浏览器通过显卡驱动将帧数据发送至显示器;
26. 显示器按刷新率(如60Hz)读取帧数据;
27. 显示器背光点亮,像素点按帧数据显示对应颜色;
28. 用户肉眼看到登录成功页面;
29. 浏览器触发load事件(window.onload);
30. 执行页面加载完成后的初始化脚本(如获取用户未读消息数);
31. 脚本调用fetch API请求消息接口;
32. 重复网络请求-响应流程获取消息数据;
33. 消息数据渲染到导航栏消息图标旁;
34. 浏览器更新渲染树,触发重绘(Repaint);
35. 重绘完成后更新显示器显示;
36. 释放HTML解析临时内存;
37. 释放CSSOM构建临时资源;
38. 渲染引擎重置状态,等待后续用户交互;
39. 浏览器网络线程关闭闲置连接;
40. 释放localStorage操作临时句柄;
41. V8引擎垃圾回收(GC)清理未使用的变量和函数;
42. 回收登录表单数据占用的内存;
43. 浏览器进程将CPU资源交还系统;
44. 监控页面渲染性能指标(如First Contentful Paint、Largest Contentful Paint);
45. 记录页面加载完成时间戳;
46. 确认所有静态资源(JS、CSS、图片)加载完成;
47. 验证页面交互元素(按钮、链接)可正常响应;
48. 登录成功页面稳定展示,无布局偏移;
49. 浏览器主线程进入空闲状态,等待新的用户事件;
50. 若开启性能监控,向监控服务上报页面渲染性能数据;
51. 监控数据包含DOM解析耗时、布局耗时、绘制耗时;
52. 从点击登录按钮到页面成功展示的全流程结束;

(结束)

从点击鼠标到登录成功512步精简版(三)

七、SpringCloud网关层:请求路由与过滤管控(第261-320步)
1. 网关应用的Netty Acceptor线程检测到新连接;
2. 将连接分配给Netty Worker线程处理;
3. Netty Worker线程接收明文请求;
4. Netty解析HTTP请求报文;
5. 提取请求方法(POST)和路径(/login);
6. 启动路由谓词匹配;
7. 匹配预设的用户服务路由规则;
8. 确认路由规则有效;
9. 触发前置过滤器链执行;
10. 跨域过滤器校验Origin头,允许合法Origin的跨域请求;
11. 日志过滤器初始化,记录请求时间、IP、路径;
12. 限流过滤器获取请求IP;
13. 从Redis连接池获取连接,查询Redis中的限流计数器;
14. 确认未触发限流阈值;
15. 参数校验过滤器提取请求体;
16. 校验用户名格式合法性;
17. 校验密码格式合法性;
18. 所有前置过滤器执行完成;
19. 网关启动服务发现;
20. 向Nacos注册中心发送查询请求;
21. 查询用户服务实例列表;
22. Nacos返回可用的用户服务实例;
23. 网关初始化负载均衡算法(如随机算法);
24. 用随机算法选择目标用户服务实例(如10.244.2.8:8081);
25. 记录服务选择结果;
26. 构建转发至用户服务的明文请求;
27. 补充服务间调用的请求头;
28. 设定服务调用超时时间;
29. 检查与用户服务的网络连通性;
30. 向选中的用户服务实例转发明文请求;
31. 监控服务调用状态;
32. 等待用户服务响应;
33. 若调用失败,触发重试机制;
34. 重试选择其他用户服务实例;
35. 确认重试次数未超限;
36. 网关记录服务调用日志;
37. 校验转发请求格式正确;
38. 确认用户服务实例资源可用;
39. 网关层完成路由与过滤;
40. 等待用户服务业务处理;
41. 监控请求转发后的连接状态;
42. 维护网关与用户服务的连接;
43. 确认过滤规则无遗漏;
44. 记录限流统计数据;
45. 网关线程保持阻塞等待响应;
46. 检查请求转发无数据丢失;
47. 确认路由匹配无错误;
48. 服务发现缓存更新;
49. 负载均衡结果缓存;
50. 网关层资源占用监控;
51. 确认无异常过滤器执行;
52. 维持网关应用稳定运行;
53. 等待用户服务返回业务结果;
54. 校验服务间调用的安全性;
55. 网关层完成管控职责;
56. 准备接收用户服务明文响应;
57. 清理前置过滤器临时资源;
58. 释放路由匹配临时数据;
59. 网关层保持响应接收状态;
60. 等待明文响应数据传输;

八、SpringCloud用户服务层:登录核心业务逻辑执行(第321-400步)
1. 用户服务的Tomcat接收请求;
2. Tomcat Worker线程被唤醒;
3. 线程接收请求数据;
4. 解析HTTP请求报文;
5. 提取请求路径(/login);
6. 匹配Spring MVC的@RequestMapping;
7. 确定目标登录处理方法(AuthController.login);
8. 检查是否有拦截器(Interceptor)需要前置处理;
9. 执行LoginInterceptor.preHandle()进行基础校验;
10. 校验通过,启动参数绑定;
11. 从请求体提取用户名、密码、验证码参数;
12. 参数绑定至LoginDTO方法入参;
13. 校验参数非空;
14. 控制器调用Service层:authService.login(dto);
15. Spring AOP代理拦截调用(若开启@Transactional);
16. 进入AuthServiceImpl.login()方法;
17. 首先验证验证码:captchaService.validate(dto.getCaptcha());
18. 从Spring容器获取RedisTemplate Bean;
19. RedisTemplate从连接池获取Jedis或Lettuce连接;
20. 向Redis发送GET请求(Key:captcha:sessionId);
21. Redis查询验证码缓存并返回;
22. 校验请求验证码与缓存一致;
23. 验证码校验通过,关闭Redis临时连接;
24. 调用用户查询服务:userRepository.findByUsername(dto.getUsername());
25. Spring Data JPA创建动态代理;
26. 若开启二级缓存(如Caffeine),先查缓存;
27. 缓存未命中,构建JPA Criteria查询;
28. 生成JPQL并转换为SQL(按用户名查询);
29. 初始化MyBatis SqlSession;
30. 执行SQL查询;
31. 向MySQL发送查询请求;
32. 等待MySQL返回结果;
33. 接收用户数据结果集;
34. 校验用户是否存在;
35. 若不存在,构建“用户不存在”响应;
36. 若存在,获取数据库中的加密密码和盐值;
37. 用BCrypt算法(相同盐值)处理请求密码;
38. 对比加密后的密码;
39. 若密码不匹配,构建“密码错误”响应;
40. 若密码匹配,确认用户状态为ACTIVE且登录失败次数小于5次;
41. 初始化JWT工具类;
42. 从阿里云KMS获取签名密钥;
43. 构建JWT payload(含用户名、角色);
44. 用密钥生成JWT令牌并设定过期时间;
45. JWT令牌生成完成;
46. 启动Redis连接存储令牌;
47. 向Redis发送SET请求(令牌-用户信息)并设置过期时间;
48. 确认令牌存储成功;
49. 关闭Redis连接;
50. 更新用户最后登录时间;
51. 调用userRepository.save(user)更新数据库;
52. 触发事务提交;
53. 构建登录成功响应对象;
54. 封装用户基本信息和JWT令牌;
55. 设定响应状态码200;
56. Spring MVC将响应对象序列化;
57. 序列化完成JSON格式响应体;
58. 设定响应头”Content-Type: application/json”;
59. 响应数据传递至Tomcat;
60. Tomcat封装HTTP响应报文;
61. 确认响应格式正确;
62. 用户服务记录登录成功日志;
63. 校验响应数据无敏感信息;
64. Tomcat Worker线程准备发送响应;
65. 响应数据通过网络发送至网关;
66. 监控响应发送状态;
67. 确认响应发送完成;
68. 释放SqlSession资源;
69. 释放方法入参占用内存;
70. Worker线程重置状态并回归线程池;
71. 用户服务业务层流程结束;
72. 记录用户登录时间;
73. 维护用户服务实例稳定;
74. 清理业务处理临时资源;
75. 确认登录业务逻辑完整;
76. 校验令牌生成唯一性;
77. 确认Redis存储的令牌有效;
78. 响应数据无遗漏字段;
79. 关闭业务处理相关连接;
80. 释放用户查询临时缓存;
81. 记录服务业务处理耗时;
82. 监控用户服务资源占用;
83. 确认无业务异常未处理;
84. 用户服务层流程结束;

九、MySQL数据库层:用户数据查询与返回(第401-430步)
1. 用户服务通过HikariCP获取数据库连接;
2. 连接池分配空闲连接;
3. 初始化数据库连接参数;
4. 与MySQL服务器建立TCP连接;
5. MySQL服务器接收连接请求;
6. 启动MySQL握手认证;
7. 发送MySQL服务版本信息和支持的认证插件;
8. 客户端选择认证插件,发送加密后的用户名和密码;
9. MySQL校验用户名密码;
10. 认证通过,建立会话;
11. 客户端发送用户查询SQL;
12. MySQL接收SQL语句;
13. 解析SQL语句语法并检查合法性;
14. 启动SQL优化器,分析查询计划;
15. 匹配用户名字段的索引(idx_username);
16. 选择最优索引执行查询;
17. InnoDB检查Buffer Pool是否有该索引页缓存;
18. 若缓存无数据,向操作系统发起pread()系统调用读取SSD磁盘;
19. 磁盘IO读取用户数据页;
20. 数据通过DMA传输到内核缓冲区,再复制到InnoDB Buffer Pool;
21. InnoDB在索引页中搜索用户名对应的记录,获取主键ID;
22. 根据主键ID进行聚簇索引查找,加载用户数据页;
23. 解析数据页获取用户记录;
24. 封装查询结果集;
25. 向客户端返回结果集;
26. 客户端接收结果集;
27. 若执行更新操作(如更新最后登录时间),InnoDB记录Redolog和Undolog;
28. 事务提交时,Redolog刷盘(fsync);
29. 若开启binlog,写入binlog文件(用于主从复制);
30. 事务状态标记为COMMITTED,释放行锁;
31. 关闭SQL执行会话;
32. 数据库连接释放回连接池;
33. MySQL数据库层流程结束;

(未完待续)

从点击鼠标到登录成功512步精简版(二)

三、浏览器网络层:登录请求封装与传输准备(第76-130步)
1. 浏览器主线程提取表单中的用户名;
2. 提取表单中的密码;
3. 对密码进行初步前端加密(MD5);
4. 构建登录请求参数对象;
5. 确定请求目标域名(如login.example.com);
6. 浏览器DNS客户端初始化;
7. 检查浏览器DNS缓存(如Chrome://net-internals/#dns);
8. 检查操作系统DNS缓存(Linux执行getaddrinfo(),读取/etc/resolv.conf);
9. 若缓存无目标域名或已过期,发起DNS查询请求;
10. 浏览器网络线程创建UDP套接字(SOCK_DGRAM);
11. DNS查询报文构建(含域名、查询类型A);
12. 同时发起AAAA记录查询(IPv6),执行Happy Eyeballs算法;
13. DNS请求发送至配置的DNS服务器(53端口,如114.114.114.114);
14. 本地路由器接收到UDP报文,进行NAT转换(源IP转为私有IP+随机端口);
15. DNS请求经过本地交换机、光猫(光电信号转换);
16. 通过PPPoE获取的公网IP发送到ISP;
17. ISP核心路由器根据BGP路由表路由到阿里云POP点;
18. 本地DNS服务器接收请求;
19. 本地DNS查询自身缓存;
20. 缓存无结果则向根服务器查询;
21. 根服务器返回顶级域服务器地址;
22. 本地DNS向顶级域服务器查询;
23. 顶级域服务器返回权威服务器地址;
24. 本地DNS向权威服务器查询;
25. 权威服务器返回目标域名公网IP(如203.0.113.45,阿里云SLB);
26. DNS响应报文沿原路返回;
27. 浏览器网络线程收到DNS响应,解析出IPv4地址;
28. 缓存到浏览器DNS缓存(TTL=300秒);
29. 缓存到操作系统DNS缓存;
30. 浏览器准备建立TCP连接,创建ClientSocket对象;
31. 调用socket(AF_INET, SOCK_STREAM, 0)创建TCP套接字;
32. 设置Socket选项(TCP_NODELAY禁用Nagle算法、SO_KEEPALIVE);
33. 设定TCP端口为443(HTTPS);
34. 调用connect()发起TCP三次握手;
35. 内核构建SYN报文(seq=rand(),win=64240);
36. 报文经过TCP→IP→Ethernet封装;
37. 网卡驱动将报文封装为以太网帧(src_mac=电脑MAC,dst_mac=路由器MAC);
38. 浏览器向阿里云SLB发送SYN包;
39. SLB返回SYN+ACK包;
40. 浏览器接收SYN+ACK包;
41. 浏览器发送ACK包;
42. TCP三次握手完成,连接建立(状态ESTABLISHED);
43. 浏览器发起TLS握手,发送Client Hello消息;
44. 消息包含TLS 1.3版本、加密套件列表、SNI扩展(www.example.com);
45. SLB返回Server Hello消息,选择加密套件(如TLS_AES_256_GCM_SHA384);
46. SLB向浏览器发送SSL证书链(服务器证书+中间CA证书);
47. 浏览器接收证书并提取公钥;
48. 校验证书颁发机构、有效期、域名匹配性;
49. 校验证书签名(使用内置根CA公钥);
50. 证书校验通过,浏览器生成预主密钥;
51. 用服务器公钥加密预主密钥;
52. 向SLB发送Client Key Exchange消息;
53. SLB用私钥解密获取预主密钥;
54. 双方基于预主密钥生成会话密钥;
55. 浏览器发送Change Cipher Spec消息;
56. SLB发送Change Cipher Spec消息;
57. TLS握手完成,后续数据使用会话密钥对称加密;
58. 浏览器构建HTTP请求行(POST /login);
59. 设置请求头(Host、Content-Type: application/json等);
60. 序列化请求参数为JSON格式;
61. 计算请求体长度并补充Content-Length头;
62. 整合请求行、请求头、请求体为完整HTTP报文;
63. 浏览器用会话密钥加密HTTP报文;
64. 加密数据封装为TLS记录;
65. TCP对TLS记录分段并添加序号与校验和;
66. 第一个TCP数据段发送至SLB;
67. 接收SLB ACK确认;
68. 后续TCP段依次发送,公网加密传输准备完成;

四、公网传输层:请求跨运营商传输至阿里云入口(第131-160步)
1. 本地路由器接收主机发送的加密TCP段;
2. 路由器解析TCP段中的目标IP;
3. 查询路由表确定转发路径;
4. 标记数据出口端口;
5. 路由器转发数据至宽带猫;
6. 宽带猫识别数据为上网请求;
7. 启动PPPoE协议封装;
8. 向运营商DSLAM设备发送拨号请求;
9. DSLAM接收拨号请求;
10. 转发至运营商BRAS设备;
11. BRAS验证宽带账号密码;
12. 验证通过建立PPPoE会话;
13. 分配临时公网IP(如120.230.45.78);
14. 加密数据通过PPPoE会话传输;
15. 接入本地运营商骨干网;
16. 骨干网路由器解析目标IP;
17. 确定目标IP归属阿里云公网;
18. 选择跨运营商传输链路(若需);
19. 加密数据在骨干网中转发;
20. 经过运营商核心交换机;
21. 抵达阿里云公网边缘节点;
22. 边缘节点接收加密数据;
23. 校验数据完整性;
24. 解析PPPoE封装头部;
25. 剥离PPPoE头部获取加密TCP段;
26. 边缘节点确认目标IP为阿里云SLB;
27. 转发加密数据至阿里云内部骨干网入口;
28. 公网传输链路状态确认;
29. 加密数据成功进入阿里云网络范围;

五、阿里云网络层:请求云内接入与初步调度(第161-190步)
1. 阿里云公网网关接收加密数据;
2. 解析TCP段中的目标端口(443);
3. 触发网络ACL规则校验;
4. 匹配ACL规则(放行443端口入方向);
5. 数据转发至安全组;
6. 安全组校验客户端IP合法性;
7. 确认客户端IP在允许访问列表;
8. 安全组放行数据;
9. 加密数据抵达SLB负载均衡设备;
10. SLB接收加密TCP段;
11. 重组TCP段为完整TLS记录;
12. SLB用私钥解密TLS记录,获取明文HTTP请求;
13. SLB初始化负载均衡算法(如加权轮询);
14. 读取后端服务器健康检查状态;
15. 过滤不健康的网关节点;
16. 用轮询算法选择目标网关节点;
17. 构建SLB转发表项;
18. 标记请求来源信息;
19. 转发明文请求至选中的网关节点;
20. 网关节点接收明文请求;
21. 确认请求格式符合要求;
22. SLB返回转发成功确认;
23. 阿里云网络层记录请求轨迹;
24. 设定请求超时监控;
25. 确认云内网络链路通畅;
26. 网关节点准备接收后续数据;
27. 阿里云公网网关更新转发状态;
28. 安全组记录访问日志;
29. 网络ACL更新流量统计;
30. 阿里云网络层调度完成(内网明文传输启动);
31. 明文请求进入阿里云VPC;
32. 数据转发至DMZ区边界;
33. 边界防火墙启动规则校验;
34. 校验请求目标为网关服务;
35. 确认DMZ区仅允许访问网关;
36. 防火墙放行请求;
37. 明文请求进入K8S集群网络;
38. 经过K8S节点网络接口;
39. 节点内核网络模块接收数据;
40. 被iptables规则拦截(匹配KUBE-NODEPORTS链);
41. 进行DNAT转换,目标地址改为Pod IP(如10.244.1.15:8080);
42. Calico网络插件检测到数据;
43. Calico解析请求中的目标Service IP;
44. 查询Service与Pod的映射关系;
45. 构建Calico网络转发规则;
46. 标记请求所属命名空间;
47. 确认命名空间隔离策略;
48. 明文数据通过Calico网络转发至目标网关Pod;

六、云服务器网络结构层:云内隔离与K8S调度(第221-260步)
1. 网关Pod的eth0接口(veth pair一端)接收数据;
2. 数据进入Pod的网络命名空间(Network Namespace);
3. Pod内Linux内核网络栈处理数据;
4. 检查Pod网络状态正常;
5. K8S Service记录转发日志;
6. Calico更新网络流量统计;
7. 边界防火墙记录DMZ区访问日志;
8. 确认云内网络隔离有效;
9. 网关Pod准备处理明文请求;
10. K8S节点监控转发状态;
11. 确认请求未跨命名空间违规访问;
12. 云内网络转发链路锁定;
13. 网关Pod的容器网络接收明文数据;
14. 容器内网络栈初始化处理;
15. 明文数据从容器网络进入应用层;
16. K8S调度层完成转发;
17. 记录Pod访问轨迹;
18. 校验Pod资源可用状态;
19. 确认请求到达正确的网关实例;
20. 云服务器网络结构层流程结束;
21. 移交控制权至网关应用;
22. 释放云内网络转发临时资源;
23. 网关应用准备解析明文请求;

(未完待续)