1、CPU版本安装
1.1 安装tensorflow
pip3 install --upgrade tensorflow
1.2 Python验证,看到版本信息就可以了
python3 >>> import tensorflow as tf >>> print('Tensorflow version ', tf.__version__) Tensorflow version 1.12.0
2、GPU版本安装(需要NVIDIA显卡)
2.1 检查驱动信息
nvidia-smi Fri Nov 16 21:22:13 2018 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 390.77 Driver Version: 390.77 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce GTX 106... Off | 00000000:01:00.0 Off | N/A | | N/A 52C P2 27W / N/A | 5938MiB / 6078MiB | 22% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 7953 G /usr/lib/xorg/Xorg 126MiB | | 0 8215 G /usr/bin/gnome-shell 109MiB | | 0 13578 C+G python3 5689MiB | +-----------------------------------------------------------------------------+
2.2 安装CUDA
# 查看网站 https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1704&target_type=runfilelocal # 选择下载这个版本 Linux x86_64 Ubuntu 17.04 runfile # 安装,但注意不要更新驱动 sudo chmod +x cuda_9.0.176_384.81_linux.run ./cuda_9.0.176_384.81_linux.run --override
2.3 安装CUDNN
# 查看网站 https://developer.nvidia.com/rdp/cudnn-download # 选择下载这个版本 9.0 cuDNN Library for Linux # 解压 tar -zxvf cudnn-9.0-linux-x64-v7.tgz # 手工安装 sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/ sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include/ # 调整权限 sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn*
2.3 安装libcupti-dev
sudo apt-get install libcupti-dev
2.4 修改.bashrc
# 增加下面两行 export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
2.5 安装tensorflow-gpu
pip3 install --upgrade tensorflow-gpu
2.6 Python验证,看到GPU就可以啦
Python3 >>> from tensorflow.python.client import device_lib >>> device_lib.list_local_devices() [name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } ... incarnation: 2559160109308400478 physical_device_desc: "device: 0, name: GeForce GTX 1060 with Max-Q Design, pci bus id: 0000:01:00.0, compute capability: 6.1" ]
3、Docker方式安装
3.1 CPU版
# 运行tensorflow docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow
3.2 GPU版
# 安装nvidia-docker wget https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb sudo dpkg -i nvidia-docker*.deb # 测试nvidia-docker,执行nvidia-smi命令 nvidia-docker run --rm nvidia/cuda nvidia-smi # 运行tensorflow nvidia-docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow:latest-gpu
4、编译CUDA Demo(非必须)
# 咱们选用的版本只支持到gcc6 apt-get install gcc-6 g++-6 ln -s /bin/gcc /bin/gcc-6 # 安装libmpich-dev sudo apt-get install libmpich-dev # 切换路径 cd PATH_TO_DEMO # 编译 make