InfluxDB环境搭建05

本节给出了InfluxQL的函数清单。

1、InfluxQL函数清单

分类 函数 功能
Aggregations COUNT() 计数
Aggregations DISTINCT() 数据去重
Aggregations INTEGRAL() 数值曲线包含的面积
Aggregations MEAN() 平均数
Aggregations MEDIAN() 中位数
Aggregations MODE() 频次最高的数据
Aggregations SPREAD() 最大值于最小值时间的差
Aggregations STDDEV() 标准差
Aggregations SUM() 求和
Selectors BOTTOM() 返回最小的数据集
Selectors FIRST() 返回最旧的数据
Selectors LAST() 返回最新的数据
Selectors MAX() 最大值
Selectors MIN() 最小值
Selectors PERCENTILE() 百分位数数据
Selectors SAMPLE() 随机抽样
Selectors TOP() 返回最大的数据集
Transformations ABS() 绝对值
Transformations ACOS() 反余弦
Transformations ASIN() 反正弦
Transformations ATAN() 反正切,一和四象限
Transformations ATAN2() 反正切,四个象限
Transformations CEIL() 向上取整
Transformations COS() 余弦
Transformations CUMULATIVE_SUM() 序列从第一个值的连续求和
Transformations DERIVATIVE() 相邻序列值之间的差除以时间差
Transformations DIFFERENCE() 相邻序列值之间的差
Transformations ELAPSED() 时间戳差异
Transformations EXP() 指数
Transformations FLOOR() 向下取整
Transformations HISTOGRAM() Flux提供的功能,将序列数值近似的转换为指定的直方图分布
Transformations LN() 自然对数
Transformations LOG() 对数
Transformations LOG2() 2为底的对数
Transformations LOG10() 10为底的对数
Transformations MOVING_AVERAGE() 滚进计算序列平均值
Transformations NON_NEGATIVE_DERIVATIVE() 相邻序列值之间的差除以时间差,仅包括非负值
Transformations NON_NEGATIVE_DIFFERENCE() 相邻序列值之间的差,仅包括非负值
Transformations POW()
Transformations ROUND() 四舍五入
Transformations SIN() 正弦
Transformations SQRT() 平方根
Transformations TAN() 正切
Predictors HOLT_WINTERS() 预测
Technical Analysis CHANDE_MOMENTUM_OSCILLATOR() 钱德动量振荡器(CMO):通过计算所有最近的较高数据点和所有最近的较低数据点的总和之间的差值,然后将结果除以给定时间段内所有数据移动的总和来创建的。结果乘以100,得到-100到+100的范围。
Technical Analysis EXPONENTIAL_MOVING_AVERAGE() 指数移动平均线:类似于简单移动平均线,但给最新数据更多的权重。这种移动平均线比简单的移动平均线对最近的数据变化反应更快。
Technical Analysis DOUBLE_EXPONENTIAL_MOVING_AVERAGE() 双指数移动平均线:将均线的值翻倍,同时为了使其与实际数据保持一致,并消除滞后,会从之前翻倍的均线中减去“均线的均线”值。
Technical Analysis KAUFMANS_EFFICIENCY_RATIO() 考夫曼的效率比:是通过将一段时间内的数据变化除以为实现该变化而发生的数据移动的绝对总和来计算的。最终的比率在0到1之间,较高的值代表更有效或更有趋势的市场。
Technical Analysis KAUFMANS_ADAPTIVE_MOVING_AVERAGE() 考夫曼自适应移动平均线:旨在考虑样本噪声或波动性,当数据波动相对较小且噪声较低时,KAMA将密切跟踪数据点;当数据波动变大时,KAMA将进行调整,并从更远的距离跟踪数据。该趋势跟踪指示器可用于识别总体趋势、时间转折点和过滤数据移动。
Technical Analysis TRIPLE_EXPONENTIAL_MOVING_AVERAGE() 三重指数移动平均线:是用来过滤传统移动平均线的波动性,实际上是单指数移动平均线、双指数移动平均线和三倍指数移动平均线的组合。
Technical Analysis TRIPLE_EXPONENTIAL_DERIVATIVE() 三重指数衍生指标:是一个用来识别超卖和超买市场的振荡器,也可以用作动量指标。TRIX计算一段时间内输入数据的对数的三重指数移动平均值。从前一个值中减去前一个值。这可防止指示器考虑比规定周期短的周期。
Technical Analysis RELATIVE_STRENGTH_INDEX() 相对强度指数:一个动量指标,用于比较特定时间段内最近的上升和下降幅度,以测量数据移动的速度和变化。

2、time函数时间单位

单位 含义
ns nanoseconds
u or µ microseconds
ms milliseconds
s seconds
m minutes
h hours
d days
w weeks

Leave a Reply

Your email address will not be published. Required fields are marked *

*