默认安全体系

默认安全体系(Default Security)是指在系统、网络或应用程序的设计和实施过程中,将安全措施作为标准配置和操作的一部分,以确保即使在未明确配置安全设置的情况下,也能提供一定级别的保护。默认安全使安全性成为组织文化的一部分,减少对用户或管理员进行复杂安全配置的依赖,从而提高整体的安全性和抵御威胁的能力。

默认安全的最终目标是:规避已知安全风险,存量风险治理逐步完成,同时新增业务默认经过安全评估和安全措施覆盖。类似于针对已知疾病的疫苗与抗体,对于已知类型风险,系统应达到投产即安全的状态。

默认安全体系的重要组成部分有:

1、安全默认配置:
确保所有系统、设备和应用程序在初始安装和设置时都具有安全的默认配置,如禁用不必要的服务、关闭未加密的远程访问等。

2、加密和数据保护:
在默认情况下启用数据加密,包括传输中的数据和静态数据,以及敏感信息的加密存储。

3、安全开发生命周期(SDL):
将安全实践集成到软件开发生命周期的每个阶段,确保安全缺陷在早期被发现和修复。

4、安全测试和验证:
对所有系统和应用程序进行定期的安全测试,包括静态和动态代码分析、渗透测试等。

5、访问控制和认证:
实施强大的身份验证机制,如多因素认证,并在默认情况下启用访问控制。

6、最小权限原则:
按照最小权限原则为用户和应用程序分配权限,确保它们仅拥有完成其功能所必需的访问权限。

7、安全审计和监控:
启用日志记录和监控,以便在默认情况下跟踪和审计所有关键操作和事件。

8、安全补丁和更新:
确保系统和应用程序在默认情况下自动接收和应用安全补丁和更新。

9、用户安全意识教育:
教育用户了解默认安全措施的重要性,并鼓励他们采取安全意识行动。

10、应急响应计划:
制定应急响应计划,以便在安全事件发生时迅速采取行动。

11、合规性和政策制定:
确保默认安全措施符合相关的法律、法规和行业标准。

12、技术架构设计:
在设计阶段就考虑安全性,采用安全的网络架构和系统设计原则。

可信计算的核心技术

可信计算(Trusted Computing)是一种增强计算机系统安全性的技术,旨在确保计算机系统和应用的完整性、可靠性和安全性。它通过一系列机制和技术手段,如硬件安全模块、加密技术、安全验证等,来确保系统和应用的可信度,增强信息系统的内生安全能力。

可信计算和等级保护2.0是密不可分的,特别提出了把可信计算技术植入基础软硬件和网络的要求:
1、把可信验证要求植入芯片、CPU、服务器、操作系统、数据库等基础软硬件
2、把可信验证要求植入网络设备、网络安全产品,解决底层安全问题
3、把可信计算技术植入“安全管理中心、安全通信网络、安全区域边界、安全计算环境”网络要素,实现对网络要素全覆盖
4、把可信计算技术植入整机、云计算平台、物联网、工控系统、移动互联网
5、把可信计算技术植入第二级以上网络

可信计算的关键技术主要包括:
1、硬件层面的可信根(Trusted Root):可信计算通常从硬件层面开始构建,使用如TPM(Trusted Platform Module)等安全芯片作为信任的根基,确保从硬件到软件的整个启动过程是可信的。
2、系统启动的可信验证:在系统启动过程中,利用可信根对系统的引导程序、系统程序等进行可信验证,确保其未被篡改或破坏。包括计算设备固件引导程序和操作系统引导程序,以及计算设备固件程序和操作系统程序 。
3、可信验证(Trusted Verification):基于可信根,构建信任链,一级度量一级,一级信任一级,把信任关系扩大到整个计算节点,从而确保计算节点可信的过程 。
4、动态可信验证(Dynamic Trusted Verification):对验证对象(文件或程序)的静态内容、运行时内存中存储的关键变量及数据、属性等进行实时、周期性的可信判断。
5、可信计算模块(Trusted Computing Module):通常指TPM(Trusted Platform Module),是一种安全芯片,用于存储加密密钥和进行平台的可信度量 。
6、可信软件基(Trusted Software Base):确保操作系统和应用程序的代码在执行时是可信的,没有被恶意修改。
7、可信软件栈:可信软件栈(Trusted Software Stack, TSS)是一组软件组件,可以在操作系统上实现可信计算的功能。它包括了管理TPM(或其替代品)的驱动程序和工具,可以用来提供密钥管理、度量和报告等功能
8、远程证明(Remote Attestation):允许远程验证计算节点的可信性,确保远程通信的安全性。
9、安全审计(Security Audit):通过记录和分析系统活动,确保系统的安全性和合规性。
10、可信网络连接(Trusted Network Connect):确保网络连接的安全性和可信性,防止未授权访问和数据泄露。
11、用户和设备身份认证:通过强身份认证机制确保用户和设备的身份可信,如使用数字证书、生物识别等技术。
12、数据保护:使用加密技术保护数据的机密性和完整性,确保敏感信息不被未授权访问或泄露。
13、安全审计与合规性:实施安全审计,确保可信计算的实施符合相关的法律法规和标准要求。
14、安全管理中心:建立安全管理中心,对可信验证的结果进行集中管理、监控和响应,确保系统的持续安全。

如何通俗解释零信任安全管控

零信任与传统的安全模型存在很大不同:
传统的安全模型:“一次验证+静态授权”的模式,就是“我记住你了,自己人”
零信任安全模型:“持续验证+动态授权”的模式,就是“你谁啊,凭证拿来”

用一句话解释零信任就是:别想刷脸,凭证拿来
无论你是哪个服务,无论你在内网还是外网,无论一天交互多少次,没有凭证,或者凭证无法验证通过,就会被阻止

零信任模型的核心原则:
1、永不信任:对内对外均不给予自动信任
2、持续验证:对所有入站和出站请求执行彻底验证
3、身份管理:对人、终端和应用进行统一身份化管理
4、精细授权:通过微分段、应用分级、功能分级、数据分级等技术,做到最小权限原则,减少潜在攻击面
5、动态授权:基于访问主体、目标客体、环境属性(终端状态、网络风险、用户行为等)进行权限动态判定
6、全局防御:持续监控终端风险、用户行为异常、流量威胁、应用鉴权等信息,实时进行信用评估
7、快速处置:对低分的主体,立即实施阻断措施

零信任模型的核心能力:
1、全面身份化能力
零信任的信任关系来源于对所有参与对象的身份验证,所有参与对象共同构建端到端信任链,参与对象包括网络、终端、人员、应用等。身份是访问控制体系的基石,零信任需要为所有对象赋予数字身份,基于身份而非网络位置来构建访问控制体系。
2、最小权限分配
零信任强调按需分配资源,实施细粒度的权限访问控制,仅授予访问主体执行任务所需的最小权限。
3、持续且动态的访问控制
零信任依据访问主体的身份信息、终端信息、网络信息等信任要素,通过实时计算信任要素形成访问控制策略。在资源访问过程中,一旦访问控制策略的决策依据发生变化,零信任将重新计算分析,动态调整认证和授权策略。
4、资源受控安全访问
零信任默认网络环境是不安全的,要求对所有业务场景、所有资源的所有访问请求进行强制身份识别和授权判定,确认访问请求的权限、信任等级符合访问控制策略后才予以放行。且要求所有的访问连接都必须加密。
5、组件联动能力
零信任需要具备较高的联动性,各类组件能够相互联动才能有效防范各类威胁并做到攻击快速闭环,切忌不可机械堆砌产品组件。

零信任架构的三大技术基础:
1、三大技术SIM之SPD,软件定义边界:应用程在部署时需要指定安全边界,以便将服务与不安全的网络隔离开。
2、三大技术SIM之IAM,身份识别与访问管理:解决身份唯一标识、身份属性、身份全生命周期管理的功能问题。
3、三大技术SIM之MSG,微隔离:在逻辑上将数据中心划分为不同的安全段,将网络边界分割到尽可能的小,然后为每个独立的安全段定义访问控制策略。

零信任架构的核心技术:
1、终端环境感知:对终端身份进行可信标识,赋予每个终端唯一的数字身份,并能够维护终端身份属性,对终端环境进行实时感知和度量,支撑零信任安全解决方案实现持续风险评估。
2、身份鉴别:身份引擎将出差人员、内部员工、合作伙伴、供应商等不同人员纳入统一认证平台,打通终端 PC、网络设备、应用系统、公司网络等各种业务系统之间的身份数据屏障。所有身份数据集中管理和共享,避免身份孤岛带来的身份数据不一致或重复、身份数据质量不可控等制约业务发展的问题,降低信息化成本。采用MFA(多因子认证)方式对同一用户进行身份鉴别,从而加强身份验证的安全性。
3、分级管控:身份引擎统一维护所有授权客体(包括应用资源、API 资源、服务资源)的安全等级。每次范围资源必须进行认证,当授权主体的安全等级大于授权客体的安全等级时,授权主体才能访问授权客体,反之则不能访问。
4、动态授权:基于对网络环境、终端环境、用户行为的持续风险评估实现授权动态判定,并且能够将访问目标的权限控制细化到应用级、API等级和服务等级,只对访问主体开放最小授权,极大地收缩了潜在攻击面,解决了传统静态授权带来的越权风险高、授权粒度粗等问题。
5、持续验证:案对人、终端和应用进行统一身份化管理,建立以身份为中心的访问控制机制。以访问主体的身份、网络环境、终端环境和用户行为等作为
认证的考量要素,并针对网络环境、终端环境、用户行为等进行持续风险评估,实现对接入用户和终端的持续验证,解决了由于安全边界逐渐模糊带来的一系列问题。
6、风险审计:根据认证日志、鉴权日志等输入,对用户安全等级的进行评价,重点对登录模式异常、访问时间异常、操作行为异常、访问习惯异常、访问关系异常等进行风险审计。
7、安全接入代理:统筹管理所有访问连接,为认证成功且具有权限的访问主体建立安全访问通道,帮助企业构建虚拟网络边界。可分为安全接入网关、API 网关、SDP网关三种类型。其中,安全接入网关、API 网关用于敏感应用场景,SDP 网关用于非敏感应用场景。

零信任架构的三层架构:
1、安全管理中心,部署安全态势感知引擎
安全态势感知引擎:对环境感知代理发送的终端风险评分、身份引擎发送的认证日志和鉴权日志、关键节点镜像的网络流量进行智能分析,实现对用户、终端、网络的安全评估。

2、策略控制中心,包括身份引擎、控制引擎
身份引擎:负责对接入用户以及终端设备进行统一认证和鉴权。当用户安全等级变更时,及时更新用户拥有的访问权限,并向安全接入代理网关下发权限变更指令。
控制引擎:通过与安全态势感知引擎联动,实现威胁事件的检测智能、处置智能、全局防御,显著提升威胁的闭环效率。

3、策略执行器,部署环境感知代理、安全接入代理网关(包括安全接入网关、SDP网关、API网关三种类型)。
环境感知代理:负责统一管理和执行终端管控策略,能够实时感知终端环境状态,并向安全态势感知引擎上报终端风险评分。
安全接入代理网:关作为终端用户访问企业内网的控制设备,能够统筹管理所有访问连接,为认证成功且具有权限的访问主体建立安全访问通道,帮助企业构建虚拟网络边界。根据用户访问场景选择安全接入代理网关的类型。

参考:
华为IP网络系列丛书:《零信任》