1、CPU版本安装
1.1 安装tensorflow
pip3 install --upgrade tensorflow
1.2 Python验证,看到版本信息就可以了
python3
>>> import tensorflow as tf
>>> print('Tensorflow version ', tf.__version__)
Tensorflow version 1.12.0
2、GPU版本安装(需要NVIDIA显卡)
2.1 检查驱动信息
nvidia-smi
Fri Nov 16 21:22:13 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.77 Driver Version: 390.77 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 106... Off | 00000000:01:00.0 Off | N/A |
| N/A 52C P2 27W / N/A | 5938MiB / 6078MiB | 22% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 7953 G /usr/lib/xorg/Xorg 126MiB |
| 0 8215 G /usr/bin/gnome-shell 109MiB |
| 0 13578 C+G python3 5689MiB |
+-----------------------------------------------------------------------------+
2.2 安装CUDA
# 查看网站 https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1704&target_type=runfilelocal
# 选择下载这个版本 Linux x86_64 Ubuntu 17.04 runfile
# 安装,但注意不要更新驱动
sudo chmod +x cuda_9.0.176_384.81_linux.run
./cuda_9.0.176_384.81_linux.run --override
2.3 安装CUDNN
# 查看网站 https://developer.nvidia.com/rdp/cudnn-download
# 选择下载这个版本 9.0 cuDNN Library for Linux
# 解压
tar -zxvf cudnn-9.0-linux-x64-v7.tgz
# 手工安装
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/
sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include/
# 调整权限
sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn*
2.3 安装libcupti-dev
sudo apt-get install libcupti-dev
2.4 修改.bashrc
# 增加下面两行
export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
2.5 安装tensorflow-gpu
pip3 install --upgrade tensorflow-gpu
2.6 Python验证,看到GPU就可以啦
Python3
>>> from tensorflow.python.client import device_lib
>>> device_lib.list_local_devices()
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
...
incarnation: 2559160109308400478
physical_device_desc: "device: 0, name: GeForce GTX 1060 with Max-Q Design, pci bus id: 0000:01:00.0, compute capability: 6.1"
]
3、Docker方式安装
3.1 CPU版
# 运行tensorflow
docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow
3.2 GPU版
# 安装nvidia-docker
wget https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
sudo dpkg -i nvidia-docker*.deb
# 测试nvidia-docker,执行nvidia-smi命令
nvidia-docker run --rm nvidia/cuda nvidia-smi
# 运行tensorflow
nvidia-docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow:latest-gpu
4、编译CUDA Demo(非必须)
# 咱们选用的版本只支持到gcc6
apt-get install gcc-6 g++-6
ln -s /bin/gcc /bin/gcc-6
# 安装libmpich-dev
sudo apt-get install libmpich-dev
# 切换路径
cd PATH_TO_DEMO
# 编译
make